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Abstract—Soft object manipulation has recently gained pop-

ularity within the robotics community due to its potential

applications in many economically important areas. Although

great progress has been recently achieved in these types of tasks,

most state-of-the-art methods are case-specific; They can only

be used to perform a single deformation task (e.g. bending), as

their shape representation algorithms typically rely on “hard-

coded” features. In this paper, we present a new latent and

semantic framework for soft object representation. Our new

method introduces internal latent representation layers between

low-level geometric feature extraction and high-level semantic

shape analysis. The proposed latent framework allows to explore

the semantic deformation process in the built latent space and

generate deformation planning with a geodesic path-based algo-

rithm for deformable objects. To validate this new framework,

we report a corresponding experimental study.

Index Terms—Representation Learning; Shape Deformation

Planning; Latent Space;

I. INTRODUCTION

R
ECENT studies have shown that the manipulation of
soft objects is crucial and indispensable to achieve high

autonomy in robots [1]. Although great progress has been
recently achieved, the feedback manipulation of soft objects
is still a challenging research question. The implementation
of these types of advanced manipulation capabilities is com-
plicated by various issues. Amongst the most important is the
difficulty in characterizing the feedback shape of a soft object.
Our aim in this work is to develop new data-driven methods
that can quantitatively describe deformable shapes.

Classical methods are based on geometric features e.g.
angles, curvatures, catenaries [2]–[5]; Its disadvantage is that
they are case-specific, thus, can only be used to perform
a single shaping action. Some works have addressed this
issue by developing generic representations that only require
sensory data. For example, [6], [7], and [8] characterize shapes
using Fourier series and feature histograms; These methods,
however, create very large feature vectors, which may not be
the most efficient feedback metric. A more effective solution
is to automatically compute generic feedback features (e.g.
as in direct visual servoing [9], [10]) and combine them
with dimension reduction techniques, as in e.g. [11], [12].
Data-driven based shape analyses [13], [14] have gained in
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Shape Descriptor and Feature Extraction

Layer 0:
Low-level Geometric Feature
Contour descriptor, convolutional layer
surface normal, etc.

Layer 1:
Compressed Learnt Feature
Principal Components (PCA), bottleneck layer
(Auto-Encoder).

Layer 2:
Semantic Features, Shape Classes
Features with semantic meaning, line class, arch
class, s-shaped class and helix class (KNN).
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Fig. 1. Conceptual representation of the proposed framework that fully
describes and represents the soft objects from four layers, namely, the
low-level geometric feature layer, compressed learnt feature layer, semantic
features and shape classes layer, and semantic shape knowledge layer.

popularity as it offers a useful alternative to model-based
approaches. An increasing amount of research have focus
on different-level segmentation and shape classifications (see
[15], [16], and [17]). However, these methods purely depend
on the designed end-to-end pipeline which ignores the seman-
tic meaning of internal features and thus failing to interpret
the entire analytical process. Therefore, latest applications
started to examine attribute-based approaches, such as binary
attributes [18], relative attributes [19], and semantic image
color palette editing [20]. Several works [21], [22] further
combine shape analysis and semantic attributes for a in-depth
deformation analysis.

Latent space approaches have recently achieved many suc-
cessful results in robotic manipulations (e.g. [23]), due to its
capability to encode high-dimensional data into a meaningful
internal representation. By using concise low-dimensional
latent variables and highly flexible generators, a latent space
allows us to generate new data samples on data space. In this
manner, a deformation planning problem of soft objects can
be solved in a novel way by constructing a feasible sequence
of deformable shapes in latent space. However, many works
[24] have adopted a linear interpolation in remapping the
latent variables back to data space, which could cause serious
distortions on the generated samples for a shape planning
scenario. For example, consider a generator g and a latent
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variable z with two infinitesimal shifts �1 and �2, then the
distance with Taylor’s expansion [25] is formulated by:

kg (z0 + �1)� g (z0 + �2)k2 = (�12)
>
⇣
J>
z0Jz0

⌘
(�12) (1)

for Jz0 = @g
@z

���
z=z0

and �12 = �1 � �2, which indicates
that the normal distance in Z space changes locally as it is
determined by the local Jacobian. Consequently, seeking the
shortest curve along a curved surface, a manifold, manifold
is a more reasonable way to compute the interpolation and
generate undistorted samples.

As a feasible solution to these problems, we present a
general data-driven representation framework for soft object
representation depicted in Fig. 1, which is composed of three
layers: A low-level soft object geometric shape processing, a
mid-level data-driven representation learning, and a high-level
semantic shape analysis. This abstract’s main contributions are
summarized as follows:

• An effective representation framework for soft object
analysis during manipulation tasks.

• A novel semantic approach for deformation process in a
latent space.

• A solution for shape planning with a geodesic path-based
interpolation algorithm in the latent space.

II. METHODS

With dimensionality transformations, we embed the low-
level features of the collected shapes in a low-dimensional
latent shape space as shown in Fig. 2. The learnt latent space
is an immersed manifold (see [25]) and can avoid collapses
during training with some tricks [26].

Fig. 2. Conceptual representation of a generator g as a mapping from low-
dimensional latent space Z into a manifold in input data space X .

A. Semantic Analysis
semantic deformation analysis is introduced to establish a

mapping from soft object deformations to latent variables in
latent shape space. Intuitively, if the dimensionality reduction
technique is invertible, then we can explore deformation rules
between different shape classes by observing the latent shape
space. With performing classification on the latent variables
encoded from collected shapes, this path will travel through
different spaces enclosed by pre-defined shape classes, thus
revealing some rules of shape deformations in real-world
applications.

B. Geodesic Path on Manifolds
Through the mapping g, for each point z 2 Z , the

Riemannian metric is defined as below:

G(z) = Jg(z)
TJg(z) (2)

Therefore, the inner product of two tangent vectors u, v 2 TzZ
is hu, vi = uTG(z)v. Consider a smooth curve in the latent
space �t : [a, b] ! Z , then it has length

R b
a k�̇tk dt, where

�̇t = d�t/dt denotes the velocity of the curve. The length of
this curve L lying on the manifold (g��(t) 2 M ) is computed
as:

L [g(�t)] =

Z b

a
kġ (�t)k dt =

Z b

a
kJ�t �̇tk dt (3)

where J�t =
@g
@z

���
z=�t

and the last step follows from Taylor’s
Theorem, which implies the length of a curve �t along the
surface can be computed directly in the latent space using
below defined norm:

kJ� �̇k =
q
�̇>

�
J>
� J�

�
�̇ =

q
�̇>M� �̇ (4)

Here, M� = J>
� J� and it is a symmetric and positive definite

matrix, that gives rise to the definition of a Riemannian metric
for each point z in the latent space Z . The arc length with
metric M� can be re-expressed as:

L(�) =

Z b

a

q
�̇>
t M�t �̇tdt (5)

To obtain a geodesic curve, the curve length L(�) is locally
minimized through an energy functional E(�) defined as:

E(�) =
1

2

Z b

a
�̇(t)TG�(t)�̇(t)dt (6)

In Riemannian geometry, taking a variation of the geodesic
energy function can lead to the Euler-Lagrange equation
calculated as:

d2�µ

dt2
= ��µ

↵�

d�↵

dt

d��

dt
(7)

where �µ
↵� is the Christoffel symbol of the metric G, which

is defined as:

�µ
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1
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✓
@Gv�

@�↵
+

@Gv↵

@��
� @G↵�

@xµ

◆
(8)

where Gvµ is the inverse of Gvµ. To avoid expensive calcula-
tions of the Christoffel symbols, instead of getting the entire
geodesic path, we only calculate out few discrete points along
on the geodesic path with discrete geodesic energy (6).

Formally, consider a discretized curve � : [0, 1] ! Z
denoted by a series of coordinates z0, z1, . . . , zN 2 Z . With T
time steps, a sequence of discrete time intervals, �t = 1/N , is
generated, which matches a discretized points on the manifold
M, g(zi). With a small shift, the velocity of g(zi) can be
formulated by vi = (g (zi+1)� g (zi)) /�t. Similarly, the
energy of this curve can be given:

Ezi =
1

2

NX

i=0

1

�t
kg (zi+1)� g (zi)k2 (9)

Fixing the first and last points, z0 and zN , as the beginning and
ending points of the geodesic curve, minimizing this energy
function would result in an approximated geodesic path, which
can be obtained by performing a gradient descent algorithm for
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z1, . . . , zN�1, along this curve. The gradient at zi is computed
as:

rziE = � 1

�t
JT
g (zi) (g (zi+1)� 2g (zi) + g (zi�1)) (10)

Based on this geodesic path, we can perform a shape planning
with Algorithm 1.

Algorithm 1: Latent Shape Planning
Input: Current shape x0, target shape x⇤, iteration N ,

encoder h, decoder g
Output: Planned deformation trace Dp

1 Compute the coordinates using (z0, z⇤) = h(x0,x⇤)
2 Slow = {z0, z1, . . . , z⇤} = ShortestPath(z0, z⇤)
3 Shigh = g(Slow)
4 Glow = {z0, z0

1, . . . , z⇤} = Interpolation(z0, z⇤, N)
5 if g is not linear then

6 Update Glow with the geodesic path.
7 end

8 Ghigh = g(Glow)
9 Dp = {Visualizer(Shigh),Visualizer(Ghigh)}

10 return Dp

III. RESULTS

As shown in Fig. 3, a foam bar with markers were used to
collect deformed shapes. During the collection, the Prime 13
motion tracking system was used to track the position of each
marker mounted on the its surface in 30 FPS.

Marker Data Collection

Foam bar with markers

Sponge bar

4 Motion capture cameras

Foam sheet

Fig. 3. Left: Experimental setups of the shape data collection; Right: the
collected shape categories.

1) Semantic Deformation: As Fig. 4 (a) shows, all the
shapes collected from the foam bar (dataset #1) are encoded
into a 3D latent shape space with t-SNE built from AE. In this
space, the deformation path generated from gesture controls
is represented as a red curve and different shape categories
of dataset #1 were organized with mesh3D from Plotly and
rendered with different colors according to the prediction of
kNN. The beginning shape located at the position of the
triangle marker, and then the foam bar started from the line
category area denoted by a blue color. As the shape deformed,
the current point moved continuously toward the positive arch
category denoted by the yellow color in area #1, and then
moved to the negative S-shaped category denoted by the cyan
color in area #2. Subsequently, the foam bar went back to

the positive arch shape from area #2 which form a identical
but inverse path. And so forth, the deformed foam bar ended
up with its original shape state. Therefore, the entire trace
semantically reflects the entire process of shape deformation
in a latent space when manipulating a soft object.

2) Latent Shape Planning: With dimensionality transfor-
mations, we embed the low-level features of the collected
shapes in a low-dimensional latent shape space. We use
Algorithm 1 to perform a shape planning through a generator
(g : Z ! X ) to map paths calculated in the latent space
into shapes on the generated manifold (M). Fig. 4(b) shows
a beginning line and target S-shape of a foam bar. Figs. 4
(c) and (d) show the resulting deformation processes from
a geodesic interpolation and shortest path, respectively. We
can clearly observed that the geodesic path-based interpolation
deformation process is smoother compared with the process
with a shortest path. For more results, please refer to [27].
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Fig. 4. Visualization of the process of latent shape planning for the foam
bar. (a) Deformation trace of the manipulation task with Leap motion in
latent shape space; (c) shows the beginning shape and the target shape;
figures (d) and (e) present the planned shape deformations; (b) presents their
corresponding deformation paths with shape planning algorithm.

IV. CONCLUSIONS

In this paper, we present a generic latent representation
framework for semantic soft object manipulation tasks. With
dimensionality transformations, we embed the shapes of soft
objects from the originally high-dimensional shape space
into a semantically low-dimensional latent shape space and
solve the shape planning with designed geodesic path-based
algorithms on the data manifold.
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