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Abstract—Precise manipulation of deformable objects remains

challenging due to the trade-off between the model complexity

and accuracy. Pushing has been a foundational task in demon-

strating nonprehensile manipulation capability with robots. In

this work, we study the problem of pushing a deformable object.

To bridge the gap between complexity and accuracy, we propose

an adaptation to the rigid body model for representing the

motions of a deformable object. We concentrate on the trajectory

tracking problem in which a robot arm pushes a deformable

object along a desired trajectory. To investigate the utility of

the proposed model, we introduce two control methods. First,

an adaptive model predictive control (MPC) is considered to

handle the uncertainties caused by the deformations of the object.

Second, a learning-based control strategy aimed at achieving

improved performance by predicting the object’s deformation

has been developed. Our results demonstrate the efficiency of

the proposed techniques by decreasing the deviation from the

desired trajectory by more than 50%.

I. INTRODUCTION

As robot deployments continue to increase in novel ap-
plications from manufacturing to healthcare, manipulation
of deformable objects remains to be a challenging research
problem. To tackle this problem, various model-based and
learning-based techniques are utilized [1]–[5]. Model-based
approaches provide a wide range of accuracy [6]. However,
extending available models for different deformable objects is
hard to attain due to their complex, anisotropic, and nonlinear
mechanical behavior. Learning-based approaches are popu-
lar owing to their capability of handling multi-dimensional
problems. Nonetheless, these methods require quality data to
provide satisfactory and reliable results.

Pushing is well-studied in the literature and it serves as a
foundational capability for more complex manipulation tasks
[7]. Applications of pushing include insertion of a cable to the
socket [8], pre-grasp manipulation [9], and creating a corridor
to the robot’s target in jammed environments [7].

Manipulation of deformable objects has been the focus of
recent research. [10] describes different classes of deformable
objects and their applications in robotics. Fig. 1 demonstrates
an example of deformations in a soft object. [11] proposed
a scheme for learning force control from demonstration for
deformable object manipulation. However, this method is not
applicable to applications that require real-time trajectory
planning due to its computational cost. [12] compares the
performance of reinforcement learning and learning from

Fig. 1: Soft object deformation under different applied forces.

demonstration in soft tissue manipulation for surgical applica-
tions. Nonetheless, this approach is limited to 2D manipulation
of deformable objects and vulnerable to the visual occlusion
of the work space.

[6] conducts a survey on the model-based manipulation
planning methods as applied to deformable objects. [5], [8],
[13] propose a 3D geometric model for linear flexible objects,
which enables task automation in manipulating these objects
both in simulation and real world. Nonetheless, these methods
do not satisfy the accuracy requirement in many applications.
On the other hand, models from the finite element method
(FEM) are demonstrated to perform accurately in applications
[14], [15]. Still, the high computational cost in these methods
makes them applicable only for off-line simulation and plan-
ning purposes. Predicting deformations of a soft object is a
hard problem. To tackle this problem, an adaptive approach
is suggested in [16] to automatically control deformations in
a model-free manner which is restricted to objects with a
well-defined texture. MPCs are also beneficial in manipulating
deformable objects since they make no prior assumptions on
linearity [17]–[19].

In this work, we study the problem of pushing a deformable
planar object along a desired trajectory on a flat surface by a
robotic manipulator. To this end, we calculate optimal actions
for the robot to minimize the deviation of the object’s center
of mass from the target trajectory. The main contributions
of this paper are: (1) proposing a new deformable object
motion model obtained by adaptation from existing rigid
object models; (2) designing an adaptive MPC to enable the
robot to interact with the deformable object on a flat surface
by estimating the varying parameters in the object’s motion
model; (3) introducing a learning-based control strategy to
approximate the object’s deformation using a multi-layer per-



ceptron [20] regression unit. Comparative results are provided
in the experiment environment to validate the quality of results.

II. SLIDER MOTION MODEL

In this section, the motion model for both rigid and de-
formable slider objects is presented. Two contact interactions,
namely sticking and sliding, are possible at the contact point
between the pusher and slider object. Accordingly, the pusher-
slider system is considered a hybrid dynamical system [19],
[21]. In this work, we focus on sticking mode between the
robot and the object. The equations of motion are obtained
under the quasi-static assumption [19], [22].

A. Slider Kinematics

The rigid slider kinematics is represented in Fig. 2 while the
velocity u =

⇥
un ut

⇤T is applied to it via a single contact
point [19], [21]. The pose of the object in 2D is defined by
x =

⇥
x y ✓

⇤T where x and y denote the position of the
center of mass and ✓ is the rotation of the object relative to
the inertial reference frame (Fa). The contact point position
relative to the object’s center of mass (C.O.M) is described by
p =

⇥
px py

⇤T in object’s reference frame (Fb).
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Fig. 2: (a) Kinematics of the rigid slider object in a single point
of contact with robot pusher. Dashed green arrow indicates the
region for sticking to the contact point, and solid red arrows
show sliding zones. (b) Changes in the C.O.M and outer shape
of a deformable slider

B. Rigid Slider Equations of Motion

To map the applied frictional forces on the object to its
resulting velocity, we use ellipsoidal approximation under the
quasi-static assumption. The unconstrained motion equations
of the pusher and rigid slider system in sticking mode can be
expressed by [19], [23]:

ẋ = f(x,u) (1)

with

f(x,u) =


RTQ
b

�
u, R =


cos ✓ sin ✓
� sin ✓ cos ✓

�

Q =
1

c2 + p2x + p2y


c2 + p2x pxpy
pxpy c2 + p2y

�
,b=

h
�py

c2+p2
x+p2

y
px

i

C. Deformable Slider Equations of Motion

The applied force on a deformable object may significantly
change the object’s outer shape and center of mass position,
as depicted in Fig. 2. Several factors affect the deformation
process. These include the force applied to the object, current
geometrical traits, and object composition. Moreover, the
pusher slider system is associated with uncertainties arising
from non-uniform mass distribution of the deformable slider,
changeable friction forces between surfaces, and noisy sensor
data.

Based on motion equation described by (1), a modified
state-space equation is presented in (2) for deformable objects
considering both deformation and uncertainties [24].

ẋ = f(x, u) + g(x, u)� (2)

where x, u represent system states and control commands,
respectively. The term g(x, u) represents the deformation
model as a function of inputs and states and � is the system
uncertainty.

III. PROBLEM FORMULATION

Let x =
⇥
x y ✓

⇤T and u =
⇥
un ut

⇤T be compact
sets representing states and control inputs with x, y, and
✓ representing the position and orientation of the object
measured at its C.O.M. and xd denoting the desired states.
The problem of trajectory tracking can then be formulated by,

min
N�1X

i=0

(x̄T
i+1M x̄i+1 + u

T
i Lui) (3)

subject to ẋ = f(x, u)

un � 0

ut � �bun

ut  �tun

where x̄ = ||xd� x|| is the object’s deviation from the desired
trajectory and N is the prediction horizon. The terms M and
L are weight matrices associated with the error states and
weight matrices associated with control inputs, respectively.
Parameters �b and �t represent motion cone boundaries [19].

IV. METHODOLOGY

In this section, we introduce a two-level scenario to under-
take the manipulation task for deformable objects. First, an
adaptive model predictive approach is suggested to estimate
the uncertainties and unpredicted deformations. Second, to
decrease vulnerability in adaptive parameters and straighten
the estimations, an additional learning-based technique is
equipped.



A. Adaptive Model-Based Predictive Control
Real-time measurements and estimation of geometrical pa-

rameters for a deformable object are complex and almost
intractable due to consecutive changes in its shape. With
this consideration, adopting motion equations for deformable
objects from rigid objects with similar shapes seems to be
a good alternative.The primary purpose of using an adaptive
MPC is to perform a fast and precise estimation of the system’s
uncertainties. To provide fast adaptation to changes in the de-
formable object during manipulation, we used the uncertainty
estimator introduced by Equation (4). In (4), uncertainty is an
unknown random vector that is assumed to be bounded and
lies within an initially known compact set. This assumption is
rational since applying finite force in a limited time frame is
unlikely to change the objects shape drastically [24].

˙̂x = f(x, u) + g(x, u)�̂ + ke + w ˙̂� (4)

B. Learning-Based Control
In this part, we introduce a learning-based control strategy

for the manipulation of deformable objects. The primary goal
is to overcome the parameter tuning difficulties in adaptive
MPC. The advised method provides not only fast model
adaptation but also predicts unforeseeable behaviors in the
deformation process. In this case, we calculate the object’s
expected position and orientation from Equation (1). More-
over, we measure the object’s actual rotation and position as
well as px and py to calculate the actual deviation from the
model for each applied action.
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Fig. 3: Model adaptation scheme

V. RESULTS

We present a performance evaluation for comparing the
performance of adaptive MPC and learning-based control in
the trajectory tracking problem. Each scenario is replicated
twenty times to test repeatability and determine a deviation
bound from the desired trajectory. We utilize a plastic bag
filled with rice as a benchmark deformable object in our
experiments.

A. Pushing a deformable slider using adaptive MPC
This section demonstrates adaptive MPC’s performance

in the tracking problem, where the pusher guides the

deformable slider object to follow the desired trajectory.
As illustrated in Fig. 4, although adaptive MPC performs
satisfactorily initially, it cannot provide proper control
commands when the deviation is greater than a specific
threshold. This insufficient performance mainly arises from
inaccuracy in g(x, u) modelling. Moreover, a major drawback
of this method is the difficulty in tuning controller parameters.

B. Pushing a deformable slider using learning-based MPC

In this part, performance of learning-based MPC is
investigated. As depicted in Fig. 4, learning-based MPC
results in a narrower deviation bound compared to adaptive
MPC. This improvement in results is due to learned
deformations instead of approximate functions.
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Fig. 4: Pushing a deformable object using (a) adaptive MPC
and (b) learning-based MPC controller. Dashed red line, dash-
dotted blue line, and solid green line indicate desired path,
average actual path and best actual path respectively.

VI. CONCLUSION

In this work we developed a model adaptation to represent
the motions of a deformable object to demostrate robust
pushing tasks. In addition, we suggest an adaptive MPC and
a learning-based control strategy for the trajectory tracking
problem. The validity of methods is investigated for the
trajectory tracking problem in two different scenarios.

The proposed control schemes are a prototype with some
restrictions that suggest directions for future works. Applying
online learning approaches can increase the control system’s
flexibility facing different deformable slider objects. Further-
more, providing force feedback and more accurate perception
methods to deliver a precise 3D estimation of an object’s shape
can result in more accurate outcomes.
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