
Graph-based Task-specific Prediction Models for Interactions between
Deformable and Rigid Objects

Zehang Weng*1, Fabian Paus*2, Anastasiia Varava1, Hang Yin1, Tamim Asfour2 and Danica Kragic1

Abstract— We present a simulation environment and a
dataset for task-specific manipulation, involving interactions of
rigid objects and a deformable bag. The dataset consists of
several scenarios with varying object number and size, as well
as manipulation actions. We also propose a dynamics prediction
approach based on object-centric graph representation and
graph neural networks.

I. INTRODUCTION

We address the problem of modelling interaction dynamics
between rigid and cloth-like objects. We consider interac-
tion a deformable bag with handles and rigid spheres in
several scenarios. We select a sparse set of keypoints on
the deformable object’s surface and represent the scene state
as a fully-connected graph. A video illustrating the scene
and graph representation is available at1. Building learning-
based predictive models for scenes is challenging: (i) there
is currently no publicly available dataset containing complex
interactions with highly deformable objects, and (ii) general-
ization requires an effective model that captures scenes with
internal and external relations of a varying number of scene
objects.

For predicting action effect on deformable objects, prior
work focuses on objects with simple topology or interac-
tions [1], [2], [3], [4], [5], [6], [7], [8], [9]. Considering
deformable objects, a new trend is to employ graph neural
networks to learn system dynamics with the ability to gen-
eralize to scenarios with a different number of objects [4],
[10], [11], [12]. We present a publicly available dataset2 for
studying action effect prediction between one deformable
object and multiple rigid objects. We also propose a method
for predicting the interactions between these.

II. TASK DESCRIPTION AND DATASET GENERATION

We generate a novel dataset for task-specific action effect
prediction on scenes containing interactions between a de-
formable bag and a set of rigid objects. The tasks are created
by varying action (opening bag, lifting the bag, moving
handles in circle, pushing rigid object) and task parameters
(bag stiffness, bag content, handle state). The bag can interact
with rigid objects and the table. For the deformable bag,

*Authors with equal contribution.
1The authors are with CAS/RPL, KTH, Royal Institute of Technology,

Stocholm, Sweden. {zehang,varava,hyin,dani}@kth.se
2The authors are with the Institute for Anthropomatics and

Robotics, Karlsruhe Institute of Technology, Karlsruhe, Germany.
{paus,asfour}@kit.edu

1https://youtu.be/a4ILwCmai9k
2https://github.com/wengzehang/deformable_rigid_

interaction_prediction/blob/main/docs/dataset.md

Fig. 1. The mixed-horizon model consists of a short-term prediction model
M1, which can predict the next time step, and a long-term prediction model
M5, which can predict five time steps into the future. This figure shows the
scene state at different time steps and our sparse keypoint representation of
the scene state at these time steps.

we model the mesh in Blender. Compared to the cloth-like
objects in previous works, our model has a more complicated
hole structure. The whole mesh consists of 1277 particles and
4326 edges.

Based on Unity and the Obi Cloth [13] extension, we build
our simulation environment and create a dataset grouped into
20 tasks as we want to learn task-specific models. For each
task, we simulate 1,000 trajectories, which results in 60,000
recorded time steps. The simulated task data is split into
training (80%), validation (10%), and test set (10%).

III. DYNAMICS LEARNING AND PREDICTION

Based on the generated dataset, we learn task-specific
prediction models for the scene dynamics. Given a scene
as a set of rigid and deformable objects Ot, the goal is to
learn a dynamics model M to predict the future scene Ot+1

after performing action at at time step t: Ot+1 = M(Ot, at).
The set of rigid objects consists of a variable number

of spheres whose state can be represented by their position
and radius. The state of the deformable bag consists of the
position and connectivity of all vertices. The action at is
parameterized by the start and end position as well as the
radius (pstart,pend, ra) of the manipulated target, which can
either a rigid object or one of the bag’s handles.

We define a graph representation that captures the state of
the rigid objects and approximates the state of the deformable

https://youtu.be/a4ILwCmai9k
https://github.com/wengzehang/deformable_rigid_interaction_prediction/blob/main/docs/dataset.md
https://github.com/wengzehang/deformable_rigid_interaction_prediction/blob/main/docs/dataset.md


bag using a set of sparse keypoints. Using this representation,
we formulate a two-stage graph learning problem to facilitate
fixed time step predictions. Then, we combine multiple
prediction models with different time step horizons to enable
predictions of up to 60 time steps into the future.

A. Graph Representation

Fig. 2. We transform a scene consisting of deformable and rigid objects
into a sparse keypoint representation. Based on the keypoints, we build a
fully connected graph, whose vertices represent keypoints and whose edges
encode the connectivity between them. The motion of the handle along the
black arrow is encoded in the global graph feature u.

We want to represent the state of the scene objects Ot

and the action at at time step t as a graph Gt = (V,E,u)
with vertices V , edges E, and a global feature vector u.
We first transform the frame into an action-local coordinate
system as in [11] and use V to encode position and state
information about the rigid and deformable objects in the
scene (see Fig. 2).

We then use edges E to build a fully connected bidirec-
tional graph between the vertices V . E encodes the pairwise
position differences of two vertices while the physical con-
nection is indicated by a flag attribute. Global feature vector
u encodes the position change of the manipulated target and
the radius of the manipulated object.

B. Two-stage Graph Prediction Model

The goal of the two-stage graph prediction model is, given
the current scene state Gt, to predict the scene graph Gt+h

after h time steps where h is constant. In this work, we
focus on single time step predictions (h = 1) and longer
time steps (h = 5). For each prediction horizon h, we learn
a dynamics model which consists of two separate modules:
Active Prediction Module (APM) and Position Prediction

Fig. 3. The two-stage model takes as input the scene state as a graph
Gin at a certain time step. This graph is fed into both the APM and PPM.
The APM classifies which vertices are active, i. e. will move in the next
time step. In the graph Gactive, the green vertices have been classified
as active and the red ones as inactive. The PPM predicts the positions of
vertices in the next time step as a graph Gposition. In a final step, only
the position updates, whose corresponding vertices have been classified as
active in Gactive, are applied to the prediction result Gpred.

Module (PPM). APM is a binary classifier predicting whether
rigid objects or parts of the deformable bag will move in the
next time step. The classification is done for every vertex
in the scene state Gt. The ground-truth active labels are
generated during training based on the position difference
between the time steps t and t + h. PPM is a regression
module that directly predicts the next scene state, i. e. the
expected positions of all vertices at time step t + 1. Both
APM and PPM are implemented as graph neural networks
with an encode-process-decode architecture.

APM outputs a binary classification mask through a final
softmax activation layer for the vertex features. The classi-
fication stage uses cross-entropy loss where N denotes the
number of vertices in the scene graph, ygti ∈ {0, 1} is the
ground-truth active flag and ypredi ∈ [0, 1] is the predicted
flag. The active flag is set to be 1 when the position difference
is above a pre-set threshold.

LClassification =
1

N

N∑
i=1

CrossEntropy(ygti , ypredi )

PPM is a regression model for the scene graph after action
execution using a final linear activation layer for the vertex
features. The regression stage uses a mean square error loss,
where tgti is the ground-truth vertex position and tpredi is the
predicted position.

LRegression =
1

N

N∑
i=1

(tgti − tpredi )2

We train both models separately on the tasks in the
generated dataset. By only applying the regression update
to those vertices which have been classified as active, we
prevent spurious motion of vertices that are not involved in
the interaction between objects in the current time step (see
Fig. 3). Under a fixed time step h, we call this combination
the two-stage model (APM+PPM), whereas the regression
stage alone is called one-stage model (PPM):

Mone−stage
h (Gi) = MPPM

h (Gi)

M two−stage
h (Gi) = MAPM

h (Gi)�MPPM
h (Gi)

Here the operator � only applies the position updates from
the PPM if the vertices have been classified as active in the
APM.

C. Long Horizon Prediction Model

The graph prediction models only predict the scene for a
fixed prediction horizon h. The longer horizon model M5 is
trained with a prediction horizon h = 5, and the single time
step model M1 is trained with a horizon h = 1. By chaining
these models recursively together, we can make predictions
for any time step t.

If we only use the single time step model M1, we can
predict the scene state Gt after t time steps given the initial



Fig. 4. The left figure shows the single time step prediction errors over all
tasks for training, validation, and test set. The right figure shows the single
time step prediction errors over all tasks grouped by material stiffness. The
mean position error is shown as the bar height and the whiskers show the
standard deviation over all tasks.

Fig. 5. Long horizon prediction errors per action for the one-stage, two-
stage, and mixed-horizon models. The solid lines show the mean position
error while the colored area around the line indicate the standard deviation.

scene state G0:

Gt = (M1 ◦M1 ◦ · · · ◦M1)︸ ︷︷ ︸
t times

(G0)

In this approach, we can either use the one-stage or the
two-stage model. However, this causes the prediction error
to accumulate fast. We can alleviate this problem, by also
incorporating the longer horizon model M5. First, we run
M5 recursively for bt/5c steps. Then, M1 is run for the
remaining time steps t mod 5:

Gt = (M1 ◦M1 ◦ · · · ◦M1)︸ ︷︷ ︸
(t mod 5) times

◦ (M5 ◦M5 ◦ · · · ◦M5)︸ ︷︷ ︸
bt/5c times

(G0)

We call this combination of a multi-step prediction and a
single-step prediction the mixed-horizon prediction model
(see Fig. 1 for an example).

IV. EVALUATION

In the evaluation, we want to investigate the benefits of our
proposed method by answering the following questions: (i)
does the inclusion of the APM (Active Prediction Module)
in the two-stage model improve the prediction results over
the one-stage model with the PPM (Position Prediction
Module) alone? (ii) How does the material stiffness of
the deformable bag influence the prediction accuracy? (iii)
Does the mixed-horizon model improve long-term prediction
results compared to an iterative application of one-stage or
two-stage models?

To answer the first question, we evaluate the single time
step prediction performance of the proposed two-stage model
compared to the one-stage model. Fig. 4 shows that the two-
stage model decreases the mean position errors while also
lowering the inter-task variance. APM improves single time
step predictions when compared to the PPM alone.

To address the second question, we compare the single
time step prediction results for soft bag material with results
for stiff bag material. Fig. 4 shows the mean position error
and the standard deviation for both materials. As can be seen,
the tasks with soft bag material have a smaller prediction
error. However, the difference is lower than the inter-task
variance, indicating that our method is able to handle tasks
independent of material stiffness.

For the third question, we compare the long horizon
prediction results for the recursive one-stage, two-stage and
mixed-horizon models on the test set. We initialize each
model with the scene state G0 at time step t = 0 and apply
the prediction in an iterative way as described in section III-
C. Since long horizon prediction performance varies between
actions, Fig. 5 shows the mean position errors and standard
deviation for the four actions Pushing an Object towards
the Bag, Handle Motion along Circular Trajectory, Opening
the Bag, and Lifting the Bag. We can see that the two-
stage model outperforms the one-stage model consistently,
independent of the action. The difference between the models
in the lifting action is quite small, since the almost all
parts of the bag move during this action. Therefore, the
first movement classification stage is not as helpful as in
the other actions. Furthermore, the mixed-horizon model
outperforms the two-stage model for longer term predictions,
while sometimes producing worse results for short term pre-
dictions. Depending on the action, the mixed-horizon model
produces much better predictions then the two-stage model
(e.g. opening the bag), while for others the improvement
is marginal (e. g. pushing an object). Overall, the mixed-
horizon model is better suited for predictions over a longer
time periods than the one-stage and two-stage models.

V. CONCLUSION

We present a novel dataset for action effect prediction
on scenes containing both rigid and cloth-like deformable
objects. Our predictive model can generalize to different
numbers of vertices in the graph, allowing us to consider
different sets of objects. We propose two modules to capture
the dynamics based on the graph networks, and implement a
mix-horizon model on top of the learned modules to predict
the future scene state and evaluate our method on different
tasks.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – Project Number 146371743 – TRR
89 Invasive Computing.

We would also like to show our gratitude to the Swedish
Research Council, Knut and Alice Wallenberg Foundation.



REFERENCES

[1] Y. C. Hou, K. S. M. Sahari, and D. N. T. How, “A review on modeling
of flexible deformable object for dexterous robotic manipulation,”
International Journal of Advanced Robotic Systems, vol. 16, no. 3,
p. 1729881419848894, 2019.

[2] J. Sanchez, J.-A. Corrales, B.-C. Bouzgarrou, and Y. Mezouar,
“Robotic manipulation and sensing of deformable objects in domestic
and industrial applications: a survey,” The International Journal of
Robotics Research, vol. 37, no. 7, pp. 688–716, 2018.

[3] C. Luible and N. Magnenat-Thalmann, “The simulation of cloth using
accurate physical parameters,” CGIM 2008, Insbruck, Austria, 2008.

[4] P. W. Battaglia, R. Pascanu, M. Lai, D. Rezende, and K. Kavukcuoglu,
“Interaction networks for learning about objects, relations and
physics,” arXiv preprint arXiv:1612.00222, 2016.

[5] N. Watters, D. Zoran, T. Weber, P. Battaglia, R. Pascanu, and A. Tac-
chetti, “Visual interaction networks: Learning a physics simulator from
video,” in Advances in neural information processing systems, 2017,
pp. 4539–4547.

[6] M. Yan, Y. Zhu, N. Jin, and J. Bohg, “Self-supervised learning of state
estimation for manipulating deformable linear objects,” IEEE robotics
and automation letters, vol. 5, no. 2, pp. 2372–2379, 2020.

[7] Y. J. Oh, T. M. Lee, and I.-K. Lee, “Hierarchical cloth simulation
using deep neural networks,” in Proceedings of Computer Graphics
International 2018, 2018, pp. 139–146.

[8] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and
J. Davidson, “Learning latent dynamics for planning from pixels,” in
International Conference on Machine Learning. PMLR, 2019, pp.
2555–2565.

[9] X. Lin, Y. Wang, J. Olkin, and D. Held, “Softgym: Benchmarking deep
reinforcement learning for deformable object manipulation,” arXiv
preprint arXiv:2011.07215, 2020.

[10] M. Janner, S. Levine, W. T. Freeman, J. B. Tenenbaum, C. Finn,
and J. Wu, “Reasoning about physical interactions with object-centric
models,” in International Conference on Learning Representations,
2019, pp. 1–12.

[11] F. Paus, T. Huang, and T. Asfour, “Predicting pushing action effects on
spatial object relations by learning internal prediction models,” in 2020
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2020, pp. 10 584–10 590.

[12] A. E. Tekden, A. Erdem, E. Erdem, M. Imre, M. Y. Seker, and E. Ugur,
“Belief regulated dual propagation nets for learning action effects on
groups of articulated objects,” in IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2020, pp. 10 556–10 562.

[13] Obi: Unified particle physics for Unity. [Online]. Available:
http://obi.virtualmethodstudio.com

http://obi.virtualmethodstudio.com

	Introduction
	Task Description and Dataset Generation
	Dynamics Learning and Prediction
	Graph Representation
	Two-stage Graph Prediction Model
	Long Horizon Prediction Model

	Evaluation
	Conclusion
	References

