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Abstract— Multi-fingered hands have potential for many
applications where dexterous manipulation as humans do is
required. To enhance its manipulation stability with a variety of
objects, tactile sensing is important. However, tactile sensors on
the multi-fingered hands are mounted in a variety of sizes and
shapes, thus how to process such abundant tactile information
and utilize it for controlling the hands is still an open issue.
This paper presents a control method based on a graph
convolutional network (GCN) which extracts geodesical features
of the tactile information from complicated sensor alignments.
Moreover, object property labels are embedded to the GCN
to adjust in-hand manipulation motions. Distributed tri-axial
tactile sensors are mounted on fingertips, finger phalanges
and a palm resulting in 1152 tactile measurements. Training
data is collected by a data-glove to transfer humans dexterous
manipulation directly. As a result, the GCN extract tactile
features and achieved the highest success rate of in-hand
manipulation. Also, object labels enabled the GCN to adjust
motions resulting in achieving manipulation with a deformable
object without squeezing it.

I. INTRODUCTION

Humans use their multi-fingered hands for dexterous
manipulation. Fingers moving in synchrony realize various
motions such as rolling and finger gating. Furthermore,
human skin supports those manipulation stability. To realize
the manipulation by robotic hands, those finger motions
and tactile sensing skills are essential, otherwise this is not
possible because occlusion by the hands easily happens.
Specifically, 3-axis tactile sensing is useful as multiple
fingers touch an object at the same time from different
orientation during manipulation. Also, when the hands grasp
the objects, grasping postures are changed by the size and
shape of the objects and thus contact positions on the hands
are diverse such as fingertips, finger phalanges and a palm.
For this reason, multi-fingered hands should have distributed
3-axis tactile sensors on the surface of the hands as much
as possible. For manipulating a variety of objects, object
properties such as slipperiness and softness also need to
be considered otherwise the hands can drop or squeeze the
objects. Therefore, tactile sensors play another important role
for recognizing such properties. Overall, if a controller of the
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Fig. 1: Schematic of the proposed motion-generating method.

hands recognizes the properties and change a manipulation
motion, the hands can achieve in-hand manipulation with
various objects (e.g. the controller recognizes that an object
is soft and generates a gentle motion resulting in successful
manipulation without breaking the object).

Graph convolutional network (GCN) is focused in this
study. The GCN is used for graph-structured applications
such as molecules and traffic networks. This study inves-
tigates the GCN applied to tactile sensor alignments as
following robotic configuration geodesically without any
experimenter’s engineering of tactile information. When
increasing the number of convolution layers, each node
is convoluted with surrounding nodes and that makes the
network acquire tactile features geodesically. This can be
utilized for recognizing whole contact states on each part
of a robotic hand resulting in successful fingers motions in
synchrony.

II. RELATED WORK

Tactile sensors enable robotic hands to do dexterous ma-
nipulation. Specifically, tactile sensors for fingertips such as
Biotac [1] and [2] GelSight are widely used. Using these tac-
tile sensors is beneficial for achieving not only manipulation
but also recognition of object or object property.

By adding tactile information to control methods, the hand
can be more dexterous and handle a variety of objects.
However, there were not suitable tactile sensors which fit to
multi-fingered hands. Specifically, tactile sensors should have
tri-axial and distributed tactile information to detect events
on the hands. Also, the sensors should be able to be bent for
fingertips. Finally, uSkin, distributed 3-axis tactile sensors
were mounted on a multi-fingered hand namely Allegro Hand
in our previous research [3]. CNNs are widely used for
tactile based robotic tasks these days. However, the network
requires to have input in a rectangular shape, and thus
tactile information needs to be reshaped by an experimenter
resulting in unstable results.

On the other hand, a study used GCN [4] for Biotac
sensor which has unstructured tactile sensor alignments [5].



Fig. 2: Tactile sensors and graph structures

However, the GCN was only applied to an area on finger-
tips.The GCN can also be applied to tactile sensors by a
multi-fingered hand.

III. PROPOSED METHOD

An Allegro Hand with uSkin sensors is used. Each sensor
point of the uSkin as a node, are connected by an edge as a
graph structure (Fig. 2). By constructing the information of
each node and edge together with GCN, the grasping state of
an object can be recognized with high accuracy. In addition,
by introducing GCN into the control method of the hand, we
can stabilize the results because there is no need to reform
the tactile sensor map as for CNNs realizing highly accurate
object recognition. In addition, it is possible to input all
sensors together without losing sensor positional information
even in complex sensor arrangements.

A model schematic of the motion generator used in this
study is shown in Fig. 1. When the robot hand starts
manipulation from the initial grasping posture, the GCN
receives sensor information. Specifically, the tactile sensor
information is first input to the graph convolution layer.
Then, the features obtained by the output from the graph
convolution layer, the joint angle and property labels are
input to all the fully connected layers. Next timestep of
joint angles are output to adjust the posture of the fingers.
By repeating these series of generation, the final grasping
posture is reached.

IV. EXPERIMENT DESIGN

A. Training Data

We selected the movement of grabbing an object from the
floor as the target movement. The reasons for selecting this
motion was that it makes contacts with the entire hand and
hence tactile and geodesical information are more important.
Each recorded training data is pre-processed before being
input to the GCN. First, in each recorded training data,
the part where the finger is not moving immediately after

the start of recording and the part where the finger is not
moving after the end of manipulation are cut out. Then, label
information corresponding to the object used to acquire each
training data is appended to the training data. Specifically,
we prepare six labels in the following order: light, heavy,
hard, soft, non-slippery, and slippery, and fill in 1 for each
label if it applies, and 0 if it does not. For example, for
a heavy, soft, and non-slippery object, the labels would be
[0,1,0,1,1,0].

B. Neural Network Settings

First of all, in order to verify the effectiveness of GCN in
this research, we conducted comparative experiments when
the neural network in the motion generator was GCN and
when it was multi-layer perceptron (MLP). Manipulation
with each model was conducted five times. When the
network was GCN, the experimental setup was six graph
convolution layers with sizes of [14, 28, 56, 112, 112, 112],
no pooling layer, and four total fully-connected layers with
sizes of [8000, 1000, 120, 50]. The input for the GCN was
tactile, joint measurements and object property labels. The
output was a next timestep of the joint measurements. The
number of dimensions of the input is 4 (finger) x 4 (joint)
= 16 dimensions for joint angle, 384 (sensor) x 3 (axis) =
1152 dimensions for tactile information, and 6 dimensions
for object property, so the total number of dimensions of
the input is 1174. The number of dimensions of the output
is 4 (fingers) × 4 (joints) = 16 dimensions. The number
of timesteps used in this experiment was 340 and the total
timestep data used in this experiment was 26300, of which
the timestep data used for training is 18410, and for testing
is 7890. The learning rate of the Adam optimizer is 0.00001.
The batch size is 100 for both training and testing. On the
other hand, when the network is MLP, the experimental setup
is as follows: the total number of fully-connected layers is
7, and the size of each layer is [1500, 3000, 1500, 700, 350,
100, 50], there is no pooling layer. The input is tactile, joint
angle and object property information. The output is joint
angle. The number of dimensions of the input and output
are the same as those of GCN.

V. EVALUATION

A. Comparison of Neural Networks

We used a hard plastic cylinder and a soft plastic cylinder
in this comparison experiment. The Allegro Hand using the
model with GCN (model I) and MLP (model IV) were
controlled. For the GCN, the joint angles of the fingers were
finely adjusted to manipulate the object (5 times out of 5
trials), and the movements of the index, middle, and ring
fingers were different. On the other hand, the final grasping
posture of the MLP was different from that of the training
data, and the object could not be lifted to a sufficient height.
Manipulation was successful in one out of five trials. When
the object was a soft plastic cylinder, the GCN succeeded
in manipulating it 3 times out of 5 trials, and the MLP
succeeded in manipulating it 0 times out of 5 trials. When the



TABLE I: Achievement of the Final Posture with hard plastic
cylinder

Model Success Rate
I 5/5
II 1/5
III 1/5
IV 0/5

Fig. 3: Grasping states with a soft plastic tube.
(a) shows the final grasping posture with a model given the
correct labels. The grasped object is not deformed from its

side. (b) shows the final grasping posture with a model
given the wrong labels. The grasped object is deformed in

oval shape from its side.

object was a sponge, the GCN succeeded 3 out of 5 times,
and the MLP succeeded 0 out of 5 times.

In order to investigate the changes in the manipulation mo-
tion due to differences in the structure of the GCN, networks
with three different graph convolutional layer structures were
built. They performed five manipulation trials. The three
models are referred to as Model I, Model II, and Model III,
respectively. Model I has six graph convolution layers with
sizes of [14,28,56,112,112,112]. In Model II, the number of
layers of the graph convolution layer is 4 and the size is
[14,28,56,112], and in Model III, the number of layers of
the graph convolution layer is 3 and the size is [14,28,56].
Also, the common parameter settings for the three models
are no pooling layer, four fully-connected layers, and size of
[8000,1000,120,50]. The manipulation using Model II often
failed because the distance between the palm and the object
was more than 2cm in the final grasping posture, and the
manipulation succeeded only once out of five trials. The same
result happened with Model III.

B. Analysis on Touch States with Labels

Next, in order to confirm the effectiveness of using prop-
erty labels, we performed manipulation by changing the
property labels during in-hand manipulation. In this com-
parison experiment, the property labels about the grasping
object was specified and input to the GCN (model I) during
the manipulation. A soft plastic tube was selected as the
object in this comparison experiment. Two types of property
labels were used as input: correct labels and incorrect labels.
The correct labels consist of light, soft, and slippery, which
are the properties of the object in this experiment, while
the wrong labels consist of heavy, hard, and slippery. Fig. 3
shows the manipulation and the cross-section of the object
in the final grasping posture when the correct property label
(Fig. 3-(a)) and the incorrect property label (Fig. 3-(b)) are

Fig. 4: Trajectories of grasping forces on a plastic tube are
shown. Blue line shows the forces generated by a model
given wrong labels. Green line shows the forces generated
by a model given correct labels.

used as input. When the correct property label was used, the
soft plastic cylinder did not collapse, and the cross section
was circular as shown by the yellow line. On the other hand,
when the wrong property label was used, the soft plastic
cylinder was crushed, and the cross section was deformed
into an oval as shown by the yellow line.

As shown in Fig. 4, the total force at each tactile sensor
was always higher when the wrong property label was used
than when the correct property label was used. From this
result, it can be said that when the correct label was used, the
robot is able to perform the manipulation with an appropriate
grasping force, and therefore, does not crush the object.

VI. CONCLUSIONS

This study showed a control method that a multi-fingered
hand manipulates a daily object. A GCN acquiring tactile
and geodesical features of a robot hand achieved dexterous
in-hand manipulation of synchronized fingers. Furthermore,
labels for each object property enabled the GCN to change
manipulating motions depending on the target object and
grasping forces were reduced.

As future works, the GCN would be improved to achieve
more stable in-hand manipulation with a variety of objects.
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