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Abstract— We propose a novel real-time physically-accurate
simulation framework for the snap connection process. For
this, we first notice the peculiarities of the process, namely,
small/smooth deformation, stiff connector, and segmented con-
tact. We then design our simulation to fully exploit these
peculiarities by adopting the following strategies: 1) linear finite
element method (FEM [1]) modeling, which is adequate to deal
with the small snap connector deformation while providing
much faster speed as compared to nonlinear FEM; 2) reducing
the dimension by balanced model reduction (BMR [2]) and
geometrical segmentation of the snap connector FEM model;
3) parallelized data-driven collision detection, which turns out
to further significantly speed up our simulation. Experimentally
verified simulations are also performed to show the efficacy of
our proposed simulation framework.

Video: https://youtu.be/s3sfPFIPS2c

I. INTRODUCTION

With the recent advancements of robotics technologies,
many attempts have been made to bring the robots into real-
world applications including the snap connection process.
This process is not only important for robotic manufactur-
ing/assembly (e.g., plastic switch box assembly, inserting
LAN cable, etc.), but also for household robotics (e.g.,
tidying objects with snap-belts, placing dishwasher stopper,
etc.) - see Fig. 1. Fast and physically accurate simulation of
the snap connectors would then be useful for the development
of its control strategies. Since model-based control of robots
interacting with soft object or soft robot is complicated
due to its high degree of freedom ( [3], [4]), data-driven
reinforcement learning(RL) receives lots of attention, which
typically requires a vast number of simulation data. Its real-
time simulation would even allow for the haptic rendering
of the snap connection in virtual reality (VR [5]) or the
development of shared-autonomy RL strategy for the snap
connection.

In this paper, we develop a novel real-time physically-
accurate simulation framework for this snap connection
process. We then render our simulation framework to exploit
the peculiarities of the snap connection processes s.t.,: 1)
we choose linear finite element method (FEM [1]) instead
of nonlinear FEM [6], as it is enough to deal with the
small deformation of snap connection while providing much
faster speed; 2) we reduce the dimension of dynamics by
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Fig. 1: Simulation snapshots of various real-world snap connection
processes

geometrically segmenting the snap connector FEM model
into few segments and adopting the balanced model reduc-
tion (BMR [2]) to further reduce the dimension of each
segmented model; and 3) we devise a parallelized data-driven
collision detection module between the connector surfaces in
the form of multi layer perceptron (MLP [7]) and with the
help of graphics processing unit (GPU), which turns out to
further significantly speed up the simulation.

Our proposed framework can real-time simulate the fast
snap closing motion while not requiring any prior exper-
iments/simulations for the model reduction (thanks to the
adoption of BMR). Unlike other sate-of-the-art results (e.g.,
[6], [8], [9]), it does not rely on implicit euler integration,
which is well-known to increase the damping effect in the
simulation [10], it can simulate the fast snap closing motion.

II. SEGMENTATION WITH MODEL REDUCTION

A. Segmentation of Socket Connector

The socket connector FEM model is segmented into the
nodes with possible contact and the nodes with no contact
(e.g., internal nodes). Define x1 := [x11;x12; · · · ;x1n1 ]

T ∈
R3n1 ,x2 := [x21;x22; · · · ;x2n2 ]

T ∈ R3n2 , where x1, x2 denote
the nodes of the two segments with x1 being the nodes with
possible contacts, while x2 not. Then, when discretizing via
passive midpoint method (PMI [10]), the representative ve-
locity of i-th segment v̂i,k for the time duration t ∈ [Tk,Tk+1],
can be written as:

v̂i,k = M̂−1
i

(
λi,k + fi,c,k

)
+ vi, f ,k (1)

https://youtu.be/s3sfPFIPS2c


(a) Plastic buckle-like geometry

(b) Lan cable-like geometry (c) Plastic cap-like geometry
Fig. 2: Segmentation structure of the socket connectors for various
geometry

where vi, f ,k := M̂−1
i

(
2Mi
T vi,k−Kixi,k

)
and M̂i := 2Mi

T +Di +

Ki
T
2 , T is the time step, λi ∈Rni is the constraint force of the

i-th segment to ensure the joining between the two segments,
fi,c is the contact force and Mi,Di,Ki ∈ R3ni×3ni are mass,
damping, stiffness matrix of each FEM segments. Since there
is no contact on second segment, the contact force of the
second segment is zero: f2,c,k = 0.

We also design the constraint force λi as a strong PMI-
based spring-damper connection between coupling nodes.
Thanks to our adoption of PMI for the simulation, we can
choose arbitrarily large spring, damping coefficient for the
(virtually-rigid) segmental coupling without losing stability
nor real-timeness, even with zero damping(Di) or BMR.
This spring-based segmentation is equivalent to the original
FEM model if the constraints are strictly satisfied. Since our
system is passive even when the spring coefficient between
coupling nodes kc are large, we can effectively ensure the
tight connectivity by increasing kc, which makes the solution
close to the original problem.

We analytically eliminate the coupling λi,k, thereby, speed-
ing up the simulation. By substituting and simplifying the
equations, the dynamics of the socket connector can be
written as follow:

v̂1,k = A f1,c,k + v1, f ,k, v̂2,k = A2v̂1,k + v2, f ,k (2)

where A ∈ R3n1×3n1 ,A2 ∈ R3n2×3n1 denotes the mapping
matrix and v1, f ,k,v2, f ,k are the remaining term, which phys-
ical meaning is the velocity when f1,c,k = 0 and v̂1,k = 0
respectively. Here, since the mapping matrix A,A2 is a
time-invariant constant matrix, it can be pre-computed. As
the large-dimensional state update equation is split into
two equations with smaller dimension via segmentation,
parallelization is made possible and the computation time
is reduced. Recall that the segment without contact can
be segmented even further so that the effectiveness can be
increased.

B. Segmentation with Balanced Model Reduction

By conducting BMR ( [2]) for each segment, the dimen-
sion of the states can be further reduced and thus speeding
up the computation. As a result of BMR on each segement,
the reduced state zi ∈Rnr

i can be described as linear mapping
of the full order state xi. Then the state update equation (1)
and constraint force can be rewritten for the reduced state
zi. By following the same steps outlined above, ˙̂z1,k and ˙̂z2,k
can be written likewise as:

˙̂z2,k = B1 ˙̂z1,k + ż2, f ,k (3)
˙̂z1,k = B2 f1,c,k + ż1, f ,k (4)

where B1 ∈ Rnr
2×nr

1 and B2 ∈ Rnr
2×3n1 are constant matrices,

which can be precalculated. In addition to the advantage of
being split into dynamics equations of small dimensions that
can be parallelized, the dimensions of the state variables
have further decreased from 3ni to nr

i , which improves the
computational speed. It can be analytically proved that our
segmentation with BMR method strictly satisfies discrete
time passivity without any artificial damping.

III. CONTACT HANDLING

A. MLP-based Collision Detection

To reduce the computation time at collision detection
stage, we develop a multi layer perceptron (MLP) based
collision detection technique. We approximate the distance
function from an arbitrary point to the given mesh into MLP
so that the complex collision detection algorithm can be
simplified into a neural network traversal process consisting
of simple calculations.

The MLP is trained with numerous randomly generated
points and their distance function values, which can be
computed as the minimum signed distance value from the
triangle on the surface of the plug connector to the point.

At every time step, a number of points p̄= [p1; · · · ; pN ] are
obtained by interpolating FEM nodes of the socket connector
(i.e., x1,k ∈R3n1 ) and these points pass through MLP, and the
distance function value of each point d = [d1, · · · ,dN ] can
be achieved. With the sign of the values, the contact points
can be chosen. Moreover, since the normal vectors can be
obtained by the gradients of the signed distance functions,
the normal vectors of the contact points can be achieved by
passing through the differentiated MLP.

B. Contact Solver

The next step is to calculate the contact force on the
obtained contact points. We compute the contact force that
satisfies Coulomb’s friction and velocity-level Signorini con-
dition based on the maximal dissipation principle [11]. In the
case of the snap connection process, since the contact force is
applied from two symmetrical directions, the condition of the
Delassus operator is bad and PGS method does not converge
well. As an alternative, we use maximal dissipation algorithm
which finds the contact force that maximizes the dissipation.
The contact problem can then be written as optimization
that maximizes energy dissipation, which formulation is
concurrent with PMI.



Fig. 3: Snapshots of the simulation results: nonlinear FEM (with
geometric nonlinearity and linear material) (top) and proposed
framework (bottom).

(a) Coarse Mesh (b) Fine Mesh
Fig. 4: Frequency comparison between 4 models - Model 1: original
FEM model; Model 2: original FEM model with GPU collision
detection; Model 3: Model 2 with segmentation; and Model 4:
Model 3 with BMR.

IV. SIMULATION ANALYSIS

A. Stability Under High Stiffness
To show the better stability property of our linear FEM

based simulator, we compare the simulation with that of the
nonlinear geometry FEM, both with high Young’s modulus.
Our framework can stably simulate the snap connection
behavior even when the damping term is removed. Unlike
our framework, if the material is very stiff (i.e., high Young’s
modulus), typically linearized dynamics of the nonlinear
FEM diverges even with small artificial damping, due to
the dynamics linearization error regardless of the integration
method as shown in Fig. 3.

B. Computation Time Analysis
We analyze the computation time of our proposed simu-

lator and how effective each of the adopted ideas speed up
the simulation. As the result of segmentation and BMR, the
dimension of the original FEM model is reduced from 663
to 6 and 25 (for each segment) when discretized coarsely
and from 1266 to 6 and 96 when discretized finely.

With the reduction of the dimension and the accelerated
collision detection, the simulation frequency (i.e. number of
time steps calculated in 1 second) was increased by 8.5-
9.5 times faster for different size of meshes. Fig. 4 shows
the frequency of the simulation of each model. Exploiting
data-driven collision detection, segmentation and BMR has
enhanced the simulation frequency. In the case of the coarse
mesh, data-driven collision detection affected the simulation
time remarkably, whereas in the case of the fine mesh, the
effect of segmentation and reduction was huge.

(a) Plastic buckle-like geometry

(b) Lan cable-like geometry

(c) Plastic cap-like geometry
Fig. 5: Force result for various materials and geometries

C. Simulation Result with Experimental Data

To verify the framework, we compare the experiment
results with the simulations. The simulation is performed
using the same control input (i.e. desired position of the plug
connector) and material parameters (i.e. Poisson’s ratio and
Young’s modulus) with the experiment. Here, time step is
used as 1[ms]. With the force/torque sensor attached below
the socket connector, we measure the force exerted to the
floor and compare it with the calculated force in simulation.

Fig. 5 illustrates the comparison of the measured force
from the experiment and that calculated from proposed
simulation. The root mean square error of the norm of
the force was 4.9355[N], where the maximum force was
48.1588[N]. Also for different geometries and material prop-
erties, reasonable contact force was deduced as shown in
Fig.5.

V. CONCLUSION

We present a real-time snap connection framework that
matches with real-world physics. For this, segmentation
and BMR are conducted to reduce the dimension of the
states. Moreover, data-driven collision detection using GPU
parallelization is proposed to speed up the detection. As
a result, we achieve the frequency of the simulation up
to 2.2kHz. The devised framework is then verified through
comparison with the experiment and it is confirmed that the
accuracy was not lost in the process of reduction.
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