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Abstract—Manipulating deformable objects, such as cloth and
ropes, is a long-standing challenge in robotics: their large degree
of freedom (DoFs) and complex non-linear dynamics make motion
planning extremely difficult. This work aims to learn latent Graph
dynamics for DefOrmable Object Manipulation (G-DOOM). To
tackle the challenge of many DoFs and complex dynamics, G-
DOOM approximates a deformable object as a sparse set of
interacting keypoints and learns a graph neural network that
captures abstractly the geometry and interaction dynamics of the
keypoints. Further, to tackle the perceptual challenge, specifically,
object self-occlusion, G-DOOM adds a recurrent neural network
to track the keypoints over time and condition their interactions on
the history. We then train the resulting recurrent graph dynamics
model through contrastive learning in a high-fidelity simulator.
For manipulation planning, G-DOOM explicitly reasons about
the learned dynamics model through model-predictive control
applied at each of the keypoints. We evaluate G-DOOM on a
set of challenging cloth and rope manipulation tasks and show
that G-DOOM outperforms a state-of-the-art method. Further,
although trained entirely on simulation data, G-DOOM transfers
directly to a real robot for both cloth and rope manipulation
in our experiments. More details are available online at https:
//sites.google.com/view/g-doom.

Index Terms—Deformable Object Manipulation, Graph Neural
Networks

I. INTRODUCTION

Robot manipulation for rigid-body objects has achieved
significant progress in recent years, including grasping novel
objects in clutter [13, 14], pushing novel objects [8], and
solving Rubik’s cube [1]. Nevertheless, many daily objects we
interact with are non-rigid, from folding clothes to packing gro-
cery bags. Extending existing rigid-body object manipulation
algorithms to deformable objects remains challenging because:
1) the degree of freedom of a deformable object is too large
for traditional models, making explicit planning very difficult;
2) the dynamics of deformable objects are highly complex and
non-linear due to the microscopic interactions in the object
itself, which is difficult to model and leads to unpredictable
behaviors [27]; 3) the deformation of an object leads to partial
observability. Consider the example of flattening a cloth in
Fig. 1: it is unclear how to mathematically specify the state
of the cloth, and predicting the exact motion of the cloth is
difficult even for a human, given the self-occlusion.

Pioneering works for deformable object manipulation rely
on the low-dimensional geometric features to specify the
object states and perform decision making by planning with a
predefined dynamic model [16, 23, 25]. However, handcrafted

(a) cloth flattening with a real robot

(b) detected keypoints from depth images

Fig. 1. Robot cloth flattening. (a) G-DOOM flattens a piece of crumpled
cloth by reasoning a dynamic model learned from simulation data. (b) G-
DOOM approximates the cloth, which has a large degree of freedom, by a
low-dimensional keypoint-based graph generated from unsupervised learning.

geometric features often generalize poorly to unseen configu-
rations, and predefined dynamics introduce accumulative error
during long-horizon planning [5, 12]. With the recent advances
in model-free visual policy learning [17, 18, 20], learning-
based methods improve the deformable object manipulation
performance. They avoid modeling the object state by directly
mapping raw visual inputs to robot actions [15, 24, 27]. In
particular, Yan et al. [28] introduces Contrastive Forward
Models (CFMs) that learn a latent dynamic model from visual
inputs and improve the sample efficiency of learning-based
algorithms by explicit reasoning. Nevertheless, the geometric
structures, which are essential to understanding the dynamics
of a deformable object [9], have been neglected.

We argue that understanding the geometric structure of
a deformable object is useful, but accurately modeling the
dynamics of the entire deformable object is unnecessary for
a manipulation task. Consider how a human manipulates
a deformable object: to fold a piece of cloth, instead of
considering the dynamics of the entire object, human only
considers keypoints of the cloth, e.g., the collar, shoulders, and
sleeves. However, detecting the keypoints and modeling their
non-linear spatio-temporal interactions remain non-trivial.

We present latent Graph dynamics for DefOrmable Object
Manipulation (G-DOOM), a framework for keypoint-based
deformable object manipulation with only visual observations.
Instead of explicitly modeling the entire object, G-DOOM
abstracts the state of a deformable object as a low-dimensional
keypoint-based graph with learned latent features. G-DOOM
models the complex non-linear keypoint interactions by Graph
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Neural Networks (GNNs) directly learned from data. Such
a formulation explicitly represents the state of the object,
simplifies the non-linear dynamics, and avoids accumulative
errors of hand-crafted models. Specifically, G-DOOM discovers
salient keypoints in an unsupervised manner from depth
images with Transporter Networks [7] and extracts keypoint-
centric feature vectors by masking the features with keypoint-
based attention maps. The observed keypoints are grouped
into a graph and high-level interactions among keypoints
are effectively captured by Graph Neural Networks (GNNs).
Nevertheless, abstraction into keypoints unavoidably leads to
information loss. Moreover, the deformation of the object leads
to self-occlusion and inaccurate keypoint detections, which
eventually introduce partial observability to the task. To tackle
these issues, we introduce a hybrid-scheme, Recurrent Graph
Dynamics. It tracks the belief, i.e., the sufficient global statistics
of the deformable object, with a Recurrent Neural Network
(RNN), and predicts the next belief conditioned on the current
belief and current graph state. By combining graph-based
modeling with belief tracking, G-DOOM can successfully
estimate a global state of a deformable object. Contrastive
learning is further used to obtain a robust latent space that
is accurate for planning. For effective decision making, we
reason the learned dynamic model with a graph-based Model-
Predictive Control (MPC), which bootstraps the search with
the keypoint positions.

We evaluate G-DOOM on three deformable manipulation
tasks: rope straightening, cloth flattening, and cloth folding.
We first show that in a realistic simulator, NVidiaFlex [2],
G-DOOM outperforms the state-of-the-art model-based de-
formable object manipulation methods on all three tasks.
Besides, we show that our learned dynamic model using
simulated data successfully transfers to a real-world scenario
with a Kinova Gen3 robot.

II. G-DOOM

We introduce latent Graph Dynamics for DefOrmable Object
Manipulation (G-DOOM). (Fig. 2). In this section, we only
provide an overview to the approach. A detailed description can
be found in our website, https://sites.google.com/view/g-doom.

In contrast to standard latent models which represent the
state with a single vector [4, 11, 28], G-DOOM abstracts a
deformable object as a set of keypoints grouped into a graph
Gt with learned node features, which provides rich semantics
including keypoint positions, depths, textures, etc. However,
modeling the high-level keypoint interactions is non-trivial.
Consider manipulating a straightened rope: if we pull one end
towards the other end, the rope loosens and the other end
remains at its original position; if we drag one end towards the
opposite direction, the rope remains straightened and both ends
move together. This makes manually constructing a dynamic
model of the keypoint-based representation difficult. We
parameterize the interactions as attention-based Graph Neural
Networks (GNNs) learned directly from data, which avoids
manually constructing the model and improves the predictive
accuracy. In addition, to tackle the partial observability caused

by self-occlusion and inaccurate keypoint detection, G-DOOM
adopts a hybrid approach, Recurrent Graph Dynamics. Besides
the graph state Gt, it introduces an additional belief state, ht,
which tracks the sufficient statistics of an object by summarizing
the graph states history G1, G2, . . . , Gt. The graph state
update is then conditioned on the belief. The hybrid state
representation performs implicit belief tracking and provides a
global understanding during spatial interaction. For decision
making, a simple yet effective graph-based MPC is used, which
initializes the search based on the detected keypoints positions
to improve the sample efficiency and convergence.

III. EXPERIMENTS

We first evaluate the proposed G-DOOM on a set of rope
straightening and cloth manipulation tasks in a high-fidelity
simulator, NVidia-Flex [2]. To minimize the sim-to-real gap,
we use masked depth images as the input, and we show that
our learned dynamic model transfers directly to a real-robot.

We compare G-DOOM with the state-of-the-art (SOTA)
model-based deformable object manipulation method, Con-
trastive Forward Model (CFM) [28], and a SOTA general-
purpose model-based RL method, PlaNet [4]. For all baselines,
we use the publicly available implementations. We show that:
1) G-DOOM generally outperforms all baselines in all tasks;
2) the recurrent graph dynamics improves the quality of the
learned dynamics; 3) contrastive learning improves the accuracy
of learned dynamics; 4) graph-based MPC generally improves
overall performance.

In this section, we only report the real robot experiment
results. Additional simulation experiments, setups, and ablation
studies can be found in our full paper available on our website.

A. Real Robot Experiment

We further evaluate our learned model on a Kinova Gen3
robot, as shown in Fig. 3.a. To collect high-quality depth
images, we mount a top-down Kinect 2.0 camera over the
workspace. We observe that high-quality depth images and the
simplified pick-and-place action model help to minimize the
sim-to-real gap, and our trained models transfer directly to the
real robot.

Evaluation metric: We measure the distance-to-goal by
counting the number of pixels within a goal region. Denoting
the set of pixels covered by a deformable object as So, we define
the score as follows. For rope straightening tasks, we define goal
region Sg to be a rectangle centered in the middle of the image
rotated for different degrees (0◦, 45◦, 90◦, 135◦), and measure
score = |So ∩ Sg|; for cloth flattening, we simply compute the
total number of pixels of the covered area by score = |So|; for
cloth folding, we define the goal area to be half of the cloth
in the initial frame and measure score = − ||So| − |Sg||. All
results are averaged over 3 random seeds.

Results: The quantitative results of the real robot experiments
are given in Tab. I and visualizations are provided in Fig. 3.

G-DOOM generally outperforms the baselines. In real
robot experiments, G-DOOM achieves higher scores than the
baselines, which is consistent with our simulation results.
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Fig. 2. G-DOOM Pipeline. G-DOOM performs unsupervised keypiont detection using depth images and extracts corresponding keypoint features {vit}Ki=1, which
are composed into a graph according to the spatial relationships. Recurrent graph dynamics learns to predict the future states considering the spatio-temporal
interaction among the local graph features {vit}Ki=1 and global statistics ht, i.e., the belief. A graph-based Model-Predictive Control (MPC) reasons the learned
graph dynamics and compute the action at conditioned on the detected keypoints.
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Fig. 3. (a) We use a Kinova Gen3 robot with a Robotiq gripper for the experiment. A top-down Kinect 2.0 camera is used to produce depth images. (b)
Visualizations of execution trajectories on a real robot (Rope Straightening 135◦ and Cloth Flattening). G-DOOM (generalization) shows that our trained
model generalizes to different objects with different initial configurations, e.g., longer ropes and smaller cloths.

TABLE I
REAL ROBOT EXPERIMENT RESULTS

Rope Cloth

0◦ 45◦ 90◦ 135◦ Flatten Fold

CFM 1.378 33.26 45.64 14.49 515.24 -158.15
PlaNet 40.93 68.52 36.92 11.51 946.82 -199.08

G-DOOM 81.91 67.56 47.92 53.50 1,458.15 -42.15

Graph-based dynamics allow G-DOOM to generalize better.
In the simulation, PlaNet achieves reasonable performance on
rope straightening tasks, while on a real robot, it fails on rope
straightening 0◦ and 135◦. In contrast, G-DOOM generalizes
in all cases. This is potentially because by down-sampling an
object into a keypoint-based graph, G-DOOM constructs an
information bottleneck that filters the high-frequency noise and
maintains a minimum amount of information for modeling the
dynamics. Also, the recurrent graph dynamics compensate for
the information loss. As shown in Fig.3 G-DOOM (general-
ization), our trained model can be directly applied to different
objects, e.g., longer ropes and smaller cloths.

Due to the space limit, we visualize only two real robot
tasks in Fig. 3.b.

IV. CONCLUSION

In this paper, we introduce G-DOOM, a graph-based
approach for deformable object manipulation. We observe that
modeling the full dynamics of a deformable object, which has
a large degree of freedom, is unnecessary. G-DOOM performs
unsupervised keypoint detection and feature extraction, model
the spatio-temporal keypoint interactions using recurrent graph
dynamics, and conducts model-based planning using the learned
model. G-DOOM tackles the partial observability caused by
the self-occlusion of deformable objects by belief tracking with
a recurrent neural network. A graph-based MPC is introduced
to improve the planning performance. We show that G-DOOM
outperforms the SOTA deformable object manipulation methods
in both simulation and a real robot.

However, the current framework generates inaccurate de-
tection which introduces noise to the dynamic model. Future
works could consider learning temporally and robust keypoints
by jointly training the perception and the dynamics module,
which might experience high GPU memory cost.
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[12] Xiao Ma, Péter Karkus, David Hsu, and Wee Sun Lee.
Particle filter recurrent neural networks. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, pages 5101–5108. AAAI Press, 2020.

[13] Jeffrey Mahler, Florian T Pokorny, Brian Hou, Melrose
Roderick, Michael Laskey, Mathieu Aubry, Kai Kohlhoff,
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[18] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi
Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In Maria-Florina
Balcan and Kilian Q. Weinberger, editors, Proceedings of
the 33nd International Conference on Machine Learning,
ICML, 2016.

[19] Aaron van den Oord, Yazhe Li, and Oriol Vinyals.
Representation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

[20] Lerrel Pinto, Marcin Andrychowicz, Peter Welinder,
Wojciech Zaremba, and Pieter Abbeel. Asymmetric actor
critic for image-based robot learning. arXiv preprint
arXiv:1710.06542, 2017.

[21] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J
Guibas. Pointnet: Deep learning on point sets for
3d classification and segmentation. In Proceedings of
the IEEE conference on computer vision and pattern

http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v97/hafner19a.html
https://openreview.net/forum?id=H1gax6VtDB
https://openreview.net/forum?id=H1gax6VtDB
https://openreview.net/forum?id=rJgbSn09Ym
https://openreview.net/forum?id=rJgbSn09Ym


recognition, pages 652–660, 2017.
[22] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas.

Pointnet++: Deep hierarchical feature learning on point
sets in a metric space. arXiv preprint arXiv:1706.02413,
2017.

[23] Mitul Saha and Pekka Isto. Manipulation planning for
deformable linear objects. IEEE Transactions on Robotics,
23(6):1141–1150, 2007.

[24] Daniel Seita, Aditya Ganapathi, Ryan Hoque, Minho
Hwang, Edward Cen, Ajay Kumar Tanwani, Ashwin Bal-
akrishna, Brijen Thananjeyan, Jeffrey Ichnowski, Nawid
Jamali, et al. Deep imitation learning of sequential fabric
smoothing policies. arXiv preprint arXiv:1910.04854,
2019.

[25] Eric Torgerson and Frank W Paul. Vision-guided robotic
fabric manipulation for apparel manufacturing. IEEE
Control Systems Magazine, 8(1):14–20, 1988.
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