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Abstract—This paper introduces an efficient procedure to
localize user-defined points on the surface of deformable objects
and track their positions in 3D space over time. To cope with
a deformable object’s infinite number of DOF, we propose a
discretized deformation field, which is estimated during runtime
using a multi-step non-linear solver pipeline. The resulting high-
dimensional energy minimization problem describes the deviation
between an offline-defined reference model and a pre-processed
camera image. An additional regularization term allows for
assumptions about the object’s hidden areas and increases the
solver’s numerical stability. Our approach is capable of solving
the localization problem online in a data-parallel manner, making
it ideally suitable for the perception of non-rigid objects in
industrial manufacturing processes.

I. INTRODUCTION

Many manufacturing processes rely on image processing to
enable industrial robots to manipulate objects. Whereas many
sophisticated camera systems meet the need for localizing and
tracking user-defined Points of Interest (POIs) on rigid objects,
there is still no sufficiently accurate solution for coping with
this problem for deformable objects yet. Moreover, existing
approaches reconstruct the deformable object‘s model online,
requiring POIs to be defined at runtime and thus being
unsuitable for fully automated processes. This paper proposes
a solution for defining POIs on an offline model and then
localizing and tracking these points on a deformable object in
an online detection pipeline.

II. RELATED WORK

Existing approaches for localizing and tracking POIs are
only applicable to specific object categories (e.g. linear [1]
or planar [2], [3]), assume speficic deformation models (e.g.
articulated models [4] or skeletons [5]) or particular materials
(e.g. textiles [6], [7]) or are restricted to detecting specific
features (e.g. points on corners or edges [8], [9]). To reach the
precision required for sophisticated manipulation tasks, prior
work requires external markers [10], [11] or elaborate physics
models [3], [12]-[15]. We combine several SotA-solutions
for rigid object state estimation (such as SHOT descriptors),
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Fig. 1: Overview of the localization and tracking pipeline

physical modelling (such as deformation fields) and computer
graphics (such as projection) into a processing pipeline which
permits the tracking and localization of user-defined points on
arbitrary deformable objects using only a single depth camera
without markers or prior physics modeling.

III. METHOD

Our algorithm consists of three distinct phases: (1) Demon-
stration of the reference model and the POlIs; (2) an iterative
localization and tracking process consisting of observing a
new point cloud, identification of correspondences between
the observation and the deformed reference model of the
previous timestep and estimation of the deformation; and
(3) a coordinate transformation of the localized POIs into
the robot end-effector coordinate system for subsequent ma-
nipulation.

A. Surface and deformation model

To efficiently perform computations, we model object sur-
faces as triangle meshes, while deformations are modelled via
a deformation grid [16]. Unlike [16], we use a highly detailed
mesh as a surface representation which is independent of the
deformation model’s resolution. This allows to increase com-
putation performance while maintaining a highly detailed sur-
face. Our deformation model consists of two data structures,
both containing |G| grid points. Whereas the equally spaced



Fig. 2: Trilinear weights (1.); static and deformed grid cells (r.)

static grid G describes the undeformed reference model, the
deformation field V represents the object’s deformed state at
the current timestep ¢. Each gridpoint ¢ is defined in G by a
position vector #;, allowing to express the position p of an
undeformed vertex within G as p = Zﬁ‘l a;t; with trilinear
weights «; € [0,1] (cf. fig. 2). The position p of the same
vertex in the deformation field V can be described analogously
by a weighted sum of deformed gridpoint positions t; as
p= leill a;t;. We define an observation D as an organized
point cloud of the deformed object.

B. Demonstration

Most SotA approaches use either a low-resolution reference
model of the deformable object [17] or none at all [16],
[18]. To allow for user demonstrations of POlIs, our algorithm
requires a high-detail reference model to be created offline.
To improve the stability of our solver, we limit the object’s
initial deformation with respect to its reference model by
demonstrating a library £ of reference models in an offline
step. Each model in £ is a triangle mesh of the object in
a distinct deformation state. The models are generated by
fusing several depth images into a Truncated Signed Dis-
tance Field (TSDF) and then extracting the triangles via the
MarchingCubes algorithm [19]. After the demonstration of the
reference models, the user can select relevant POIs on the
meshed surface via a graphical user interface. At runtime, after
the first observation D, the model in £ most similar to D is
used to initialize G.

C. Correspondence identification

The definition and identification of correspondences links
the current observation and the deformed reference model
of the previous timestep (¢ — 1) and forms the basis of the
deformation estimation: The estimation of a deformation is
equivalent to the minimization of the distances between all
correspondences. We define three correspondence types:

a) Point-to-point (P2P): Result from projecting each
surface point p,. of the deformed reference model into the
image plane and comparing it to the corresponding point p?
that has been measured. The quality of a P2P-correspondence
can be described by a weight w, = (Y4t4at®e)2 where
wy denotes the distance between projected point p,. and its
correspondent p¢, w, the distance between p_.’s normal n.
and its correspondent n?, and w, the angle between the
camera view direction v and n..

b) Point-to-surface (P2S): Projective correspondences
such as P2P typically only yield approximate, not exact,
correspondences. P2S-correspondences add another degree of
freedom by associating a point in the model to a plane in

the observation, defined by the P2P-correspondence p? and
its normal n¢. During deformation estimation, this allows to
only minimize the distance d. along the normal.

c) Feature correspondences: Unlike projective corre-
spondences, correspondences based on feature matching can
detect large deformations, tangential movements and rotations
of the object out of the image plane. Prior work [20], [21]
and our own experiments have found the PFH and FPFH de-
scriptors to be highly sensitive and specific but to scale poorly
with the size of the point cloud, while SHOT descriptors scale
linearly and are robust against outliers. We implement feature
correspondences using SHOT, as its sensitivity suffices for
most real-world applications.

D. Deformation estimation

The deformation of the reference object can be estimated by
formulating an optimization problem to estimate their degrees
of freedom and thus the deformation of the reference object.
Using the notation introduced in III-A, the deformation of a
single grid point i can be expressed as V; = t; — t;. For
estimating the deformation field, we split up all unknows into
a single global rigid transformation (¢, R) and many local
transformations (¢;, R;) and combine them in a vector X
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The interpretation of correspondences as error terms E allows
to formulate the deformation estimation of X as an energy
minimization problem, which is also suggested by [16]-[18].
This optimization can be regarded as a model regression
problem and solved by existing solvers:

E(X) = wpEpsp(X) +wsEpgs(X)
+ WfEF(X) + WTEReg<X)

[17] and [16] solve a similar high-dimensional nonlinear
optimization problem by linearizing the model and using the
Gauss-Newton method, incurring a significant overhead for the
computation of the Jacobian J. [16] splits the optimization into
a two-stage process composed of a fixed registration followed
by a deformation estimation. We leverage the fact observed in
[22] that the deformation estimation can again be split into two
independent sub-problems, which allows to solve for nonlinear
rotations and linear translations using iterative Gauss-Newton
on each subproblem in turn (“flip-flop” strategy). We perform
fixed registration, the estimation of a global transformation
(t, R), via Prerejective RANSAC (PSC). For the deformation
estimation, setting up the Jacobian for the error terms of the
three correspondence types is straightforward:
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Fig. 3: Precision for different deformation types (l.); estimated
deformation grid and ground-truth point cloud (blue) before
and after one deformation cycle (r.)
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where |C] is the number of correspondences and Jpgp,; is
the entry at the ¢ row and i column of the Jacobian Jpsp.
The Jacobians for Fpss and Er can be found analogously.

a) Regularization: With a single camera’s perspective, it
is impossible to observe the complete surface of an object. The
spatial lack of correspondences implies an underdetermined
equation system and E being ill-conditioned. To alleviate
this problem, we use an ARAP regularizer [22], where non-
observable surface points are deformed such that the total
deformation of the body is as rigid as possible. Unlike prior
work [22], [23], we estimate the deformation in terms of )
instead of the mesh, leading to the adapted ARAP term

G|
Ereg=Y_ > ||tti—t)) = Ri (b =) |2, &)
i=1 jeN;

where N; denotes the neighborhood (6 surrounding grid
points) of grid point ¢ € [1,|G|]. For each grid point i, our
solver must solve for 6 unknowns describing its pose (R;|t;).
As shown in [23], the (non-linear) estimation of R; can be
solved in closed form given t;. For ¢;, we obtain
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where the left-hand side is the product of the Laplace matrix
L with the vector of all unknowns X;.

b) Flip-flop solver: We iteratively estimate R; and t;
in turn by closed-form solving for R; via singular value
decomposition (see [23] for details) and approximating ¢; via
Gauss-Newton, where the update step AX is obtained via pre-
conditioned conjugate gradients (PCG). Using the Jacobians
derived above, we can obtain the deformation X, after an
update step via

JVT = J ,pdpop + JhosIpos + JhJr + LTL (7
Jlr = Tk, prpep + Jphosrres + JEre + L PRey  (8)
JT'g Ax =JTr )

X1 =& + AX (10

Fig. 4: POI tracking on a deformable tripod (l.); rubber seal
assembly (r.)

IV. RESULTS

a) Precision: In a first set of experiments, we assess the
precision of our approach by comparing tracking results versus
manually labeled correspondences. 10 POIs on a deformable
tripod were considered, with each POI also fitted with a color-
coded marker to facilitate manual labeling.! The tripod was
repeatedly deformed and the poses of the POIs were estimated
by our algorithm as well as via the markers (cf. fig. 3).
Our approach was capable of localizing all POIs with sub-
millimeter accuracy, and tracking all POIs with errors between
0.6 and 2.2 mm. Unlike feature-matching based approaches,
we always estimate the deformation of the complete surface
and thereby avoid “mismatching” POIs by design.

b) Performance: A significant advantage of our approach
is that each step of the solver pipeline can be efficiently
parallelized. We benchmarked our algorithm using reference
and deformation models at fine? and coarse® resolutions. A
parallelized CPU implementation of our algorithm localized
all POIs in under 1.5s in both cases on consumer hardware.

c) Robot experiments: In a first robot experiment, we
track a point on the surface of a tripod subjected to several
deformations of up to 20% of the tripod’s arm length, or ca.
2.5 cm. We use a URS robot equipped with a measuring tip to
visualize tracking results (cf. fig. 4 (1.)), confirming precision
within 2 mm. In a second experiment, we use our approach to
position a flat rubber seal on a housing, illustrating its potential
for real-world industrial applications (cf. fig. 4 (r.)).

V. DISCUSSION AND OUTLOOK

Our approach and solver pipeline allows efficient tracking
and localization of POIs on deformable objects. Where prior
work requires markers, explicit modelling or does not allow for
offline POI definition, our approach achieves sub-millimeter
precision localization and millimeter-precision tracking with-
out these drawbacks. This makes it particularly suitable for
applications in industrial robotics and flexible, quickly recon-
figurable assembly or surface treatment tasks. We are working
on integrating our solution into an industrial robot manipula-
tion framework, a more efficient GPU implementation and a
more extensive evaluation on a wider set of benchmarks.

I'Since our algorithm only considers geometric features, the presence of the
markers neither helped nor hurt the algorithm.

2Reference model: 30000 vertices, V: 3250 grid points

3Reference model: 15000 vertices, V: 700 grid points
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