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Fig. 1: Textile taxonomy based on yarn material and construction technique. The paths highlighted in red correspond to the

classes explored to validate the proposed taxonomy.

Abstract— The ability to perceive and handle textiles is
important for many applications in service and industrial
robotics. We present and discuss some of the open scientific
challenges in this area and how perception, planning and
control can contribute to address them.

I. INTRODUCTION

The need for perceiving and handling textile and non-

rigid flat materials has already been identified several decades

ago [1]. Textile in particular has gained significant attention

in the scientific community, as its modelling and handling

is important in applications such as assisted dressing [2],

folding, automated sewing and textile recycling, to name a

few. Open challenges arise from the theoretical perspective

regarding perception, planning and control, as well as the

ability to demonstrate advances in practice, given still rather

limited sensing and actuation capabilities of commercial

robot systems.

The industrial relevance originates not only from assistive

and service robotics, but also from the fashion industry.

The latter is undergoing a huge transformation to address

sustainability concerns. Textile production and subsequently

its recycling and reusing, is largely not automated as there are

still huge limitations in how robots can handle deformable

objects. Also, robotics and fashion communities need to be

brought closer together. In our recent work [3], we outlined

a textile taxonomy considering the production process and

fiber material commonly used in the textile production in-

dustry, see Fig. 1. We also showed how production method

and fiber material can be used for classification and discussed

how this classification affects control and planning of textile

handling. One of the most important insights was the effect
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of the production method on the textile’s properties and

behavior when it is pulled or twisted: the textile will stretch

differently along or vertical to the weaving or knitting

direction. Furthermore, there are differences in behavior

between weaved or knitted textiles, based on how threads

are interlocked.

There are many different textile properties we would like

to study and using an integration of data-driven methods,

sensors and actuation available in robotics community makes

this possible. For example, we may want to understand

textile strength, elasticity, softness for the purpose of assistive

dressing. We may also want to understand heat insulation,

water absorbency/repellence and resistance to chemicals for

recycling and washing. To this end, we need to define a

structured approach of how these can be studied and their

relevance for different applications. In this work we outline a

non-exhaustive table of conditions and properties we would

like to identify with relevant sensing and manipulation ap-

proaches in Fig. 2 and present below some of the additional

insights on these from our ongoing work.

II. MOTIVATION AND ONGING WORK

Existing works on textile manipulation in robotics focus

on domestic chores such as laundry handling [4] or folding

[5]–[7]. Other non-contact techniques were employed for

perceiving textile by leveraging spectral measurements and

close-range high-resolution texture defining imaging [8]. In

addition to vision, haptics are also employed for material

identification [9]. We use the term material here to include

the works that go beyond textile since many of the works

do not focus on textile specifically but additionally consider

other materials such as wood, glass, plastic, etc. Although

vision may not be enough to perceive textile physical prop-

erties, examples show that wrinkles captured in video can be

correlated to the stiffness and density of textiles [10]–[12].



Fig. 2: Examples of garment conditions and properties we would like to address given robotic sensing and actuation.

In the robotics community there is currently no structured

approach for studying and comparing works addressing

textile perception and handling. One of the difficulties is

the large number of conditions and properties we may be

interested in modelling. An additional challenge is the mul-

titude of different sensors used that are chosen specifically

for each application. Lastly, manipulation is regarded simply

as means of executing the task rather than utilized as a tool

for simplifying perception. Fig. 2 summarizes some of the

conditions and properties we may be interested in identifying

and available sensing and manipulation capabilities it is

possible to employ. In addition, the taxonomy outlined in

Fig. 1 is another example of structuring work with respect

to production method and fiber material. We now summarize

how this taxonomy was used in our recent work [3].

A. Exploiting Textile Taxonomy

Textile is a flexible material composed of interleaving or

interlacing yarns depending on the production method used.

Fiber material has an important effect on the textile property,

but the construction method is equally important. As an

example, t-shirts and jeans may be made of cotton, but in

terms of elasticity they behave differently due to differences

in the production method: t-shirts are commonly knitted and

jeans are woven. Indeed, woven textile are often hard and

non elastic by production while knitted textile are usually

soft and stretchable in all directions. However, even for the

woven textile we can control elasticity by weaving partially

elastic threads. The production method also has implications

on textile durability. Knitted textiles are more prone to get

loose, and yarns are easily destroyed in interaction with sharp

surfaces, [13]. Woven fabric is commonly more durable but

may require larger forces to shape and handle, such as for

example, when sewn or dressed.

There is an additional insight regarding the production

method and to what extent it can be identified using cameras

we commonly equip robots with. Given an image taken

by a regular camera, we may not be able to distinguish

between the fiber structure, which is only visible on a

microscopic level, see Fig. 3. The images on the right reveal

the difference between satin and plain weaving patterns and

can also provide the direction of yarns which is then directly

related to the elastic properties of the textile. Thus, if no high-

resolution, microscope images are available, we may need

other ways of identifying the production method and the

direction of knitting/weaving. Similarly to humans, robots

can use haptic sensing in combination with actions such

as pulling and twisting to identify these patterns. In other

words, the integration of multimodal sensing with actuation

is needed for identifying different properties of textiles.

Fig. 3: Textile can look the same given regular camera (left),

but are very different on the microscopic level (right).

To exploit the taxonomy, we devised a dataset of wrench

measurements used for studying fiber material and produc-

tion method [3]. The dataset consists of samples from 40

textiles that were pulled and twisted by a dual-arm robotic

system equipped with wrists-mounted F/T sensors. The work

relates closely to parts of Fig. 2 as we looked into identifying

elasticity properties using a combination of sensing and ma-

nipulation. The dataset covers three different yarn materials

(cotton, polyester and wool) and the two main production

methods (knitted and woven). Initial results showed that

introducing action facilitates classification of fiber material

and production methods, see Fig. 4. For example, there

is a clear difference between Cotton-Woven and Cotton-

Knitted samples, same fibers material but different pro-

duction method. Also, as expected, interacting with woven

samples results in larger forces compared to knitted ones,

see Fig. 5, relating to the elasticity of samples. We may also

observe some trend that pulling was more informative than



Fig. 4: Examples of classification results for textile samples based on the production method and fiber material.

Fig. 5: Force measurements during pulling and twisting

woven and knitted samples.

twisting for classification but more thorough experiments

need to be conducted to obtain an even better understanding.

III. OPEN PROBLEMS

Perception and handling of textile, garments and non-rigid

flat materials remains an open challenge not only in robotics

but also in the computer vision and graphics communities.

We have only seen the beginning of how the results from the

research community can be used in, for example, fashion

and service robotics industry to address various types of

applications. Robotics research can have a huge impact on

the applications areas, especially from the sustainability point

of view. An important aspect in deformable object manip-

ulation is the interplay between perception, planning and

control. Recent advances in the development of simulation

environments and machine learning methods are an important

tool for integrating data-driven and analytic approaches in

terms of planning and control.

The goal of this paper is to shed some light on the

complexity of textile handling and what aspects may need to

be addressed in order to make robotics research even more

relevant from the textile industry perspective. It is on us

to demonstrate how the textile industry can be made more

sustainable. Handling of textiles is only one dimension -

there are interesting applications also from the perspective of

the raw material sourcing, logistics and customer experience.

We have summarized our ongoing work on using pulling

and twisting for textile classification, outlined a suitable

taxonomy and identified conditions and properties that are

of relevance and should be addressed by our community.

Apart from visual and haptic feedback, auditory perception

and olfaction may be important to identify conditions such as

clean/dirty or whether parts of a garment are made of plastic

or metal, to name some. Many of the future applications are

also related to the ability to perform dexterous manipulation,

including coordination of several robotic arms and advanced

robotic hands. Handling of deformable materials will also

push for using more soft structures when building robots and

go beyond simple actions of grasping, pulling and pushing -

we may be in need of new theoretical foundations for in-hand

manipulation.

Perception remains an open problem. Representation

learning from the multi-modal perspective is another inter-

esting challenge. How to integrate range, haptics, auditory

and olfaction to provide real-time feedback to the control

and planning modules? Or is it so that perception and action

should be represented in an integrated manner and that we

can exploit reinforcement learning frameworks to explore

the set of possible actions while maximizing the perceptual

feedback? And how can we do this if it is not possible to

generate large-scale data on real robotic systems and the

state-of-the-art simulators are still not at the level where

advanced interaction between rigid and deformable objects

can be easily generated?

Apart from the complex interaction dynamics, there are

further conditions and properties of textiles we want to

understand. Some of these are stated in Fig. 2. Wet or dry

are not defined as two distinct states but there is a whole

range of states that may be relevant for drying, ironing or

folding. Thus, planning of when to fold while ironing or

deciding when drying is finished will require suitable state

representation. Naturally, some of these will be learned by

observing humans rather than using simulation - thus offering

interesting new challenges for the areas of human action

recognition and learning by demonstration.
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