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Abstract— This paper presents an industrial soft robotics
application for the autonomous plastering of complex shaped
surfaces, using a collaborative industrial manipulator. In the
core of the proposed system is the deep learning based soft
body modeling, i.e. deformation estimation of the flexible
plastering knife tool. The estimation relies on visual feedback
and a deep convolution neural network (CNN). The transfer
learning approach and specially designed dataset generation
procedures were developed within the learning phase. The
estimated deformation of the plastering knife is then used to
control the knife inclination with respect to the treated surface,
as one of the essential control variables in the plastering
procedure. The developed system is experimentally validated,
including both the CNN based deformation estimation, as well
as its performance in the knife inclination control.

I. INTRODUCTION

The latest surge in the demand for robotics shifts
towards small and medium manufacturing enterprises,
which work with small customer-oriented manufacturing.
This approach requires fast and frequent changes to the
production line, and drives the robotics research towards
new applications and requirements. For instance, the
product finishing manufacturing niche, which involves
sanding, plastering, and painting requires precise compli-
ant control of end effectors. While most traditional robotic
tasks involve manipulation of rigid objects with rigid
end effectors, product finishing involves manipulating
deformable objects, which has become possible with the
development of sensing and computational capabilities.

This paper focuses on robotic plastering application,
which involves a flexible robotic tool, as an example
of one product finishing application. Other examples of
compliant deformable object manipulation exist in fabrics
and clothing industry, flexible cable manufacturing [1],
food and agriculture robotics [2], medical applications [3],
and even robotic art [4]. Plastering application extends the
capabilities of previously developed collaborative robotic
framework, in which we have developed a robotic sanding
system 1 [5].

In this work, we propose a deep learning based control
feedback for manipulation of a deformable object in an in-
dustrial task. Similar to other work in the field, we choose
a set of deformation features that enable the control
to account for tool deformation. One classical approach
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Fig. 1: While most traditional robotic tasks involve
manipulation of rigid objects with rigid end effectors, the
domain of deformable object manipulation is becoming
ever more interesting with the development of sensing and
computational capabilities. Robotic plastering, involving a
flexible robotic tool, is an example of one such application.
It requires the control of contact force, position and
attitude towards the surface, which is the focus of this
paper.

models position and shape information independently in
the deformation features [3].

II. Shape modelling and control

When plastering manually, workers apply the plastering
material to the treated object using a plastering knife. In
this work we equipped a KUKA KR 10 robot with one
such off-the-shelf knife tool, using a custom designed
mount as shown in Fig. 2. The mounted plastering
knife is flexible and mounted together with an Intel
RealSense RGB-D camera. The camera is mounted so
that it captures the complete plastering knife within the
camera frame. Inspired by the results from vision-based
tactile sensing development [6], the plastering tool was
enriched with visual cues for easier deformation modeling
through image analysis. These fiducial markers can be
used to estimate the deformation with different techniques
of computer vision.

In order to properly execute plastering tasks, the robot
needs to control both the knife inclination angle to the
treated object and the contact force. Since the shape of the
tool is a result of the contact between the plastering knife
tool and the treated object, we have designed the control
system that decouples the system into two parallel control
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Fig. 2: Flexible knife tool is mounted on the robot
end effector along with the sensory aparatus consisting
of an Intel RealSense RGB-D camera and a torque
sensor. Camera is placed so that the entire tool is visible
during manipulation, and the torque sensor is deployed
to measure contact forces with the treated surface.

system by measuring the shape of the knife. First the knife
inclination is controlled, where the robot flange is rotated
to provide the desired inclination of the knife in the
current shape regardless of the contact force. At the same
time the contact force is controlled through the impedance
based Forward Dynamics Compliance Controller (FDCC)
[7].

We focus on the knife inclination angle control, and
leave the contact force and trajectory planning discussion
for future work. The trajectory planning is assumed as a
higher level planning algorithm that generates a series of
desired knife tip waypoints, Td

κ
B , that take into account

the desired poses and inclination angles of the knife, w.r.t.
to the robot’s base. The surface normal nB and the desired
force of contact define a nonlinear mapping of the knife
shape under deformation, namely ∆z, ∆x and ∆φ, i.e. in
the desired inclination and the position of the tip with
respect to the treated surface.

Planned trajectories rely on the known shape of the
treated surface, and an ideal shape of the knife. To make
sure that the knife tip position and tangent orientation
maintains the desired knife tip pose, we propose the
following control strategy. Let us assume the knife is
bent around the shape shown in Fig. 3 at an angle ∆φ
w.r.t. the fixed part of the knife tool. Also, let us assume
the current knife tangent is xκB , while the desired one is
xd
κ
B . The control strategy is to rotate the robot flange LFB

so that the current knife tip tangent vector xκB is aligned
to the desired xd

κ
B , while keeping the knife tip pκB at the

same position. In other words, the robot flange is to be
rotated around the estimated knife tip position, for an
angle ∆α:

∆α ∼ ‖xd
κ
B × xκB‖

‖xdκB‖ ‖xκB‖
(1)

calculated as a small angle approximation of the vector
product between the desired and the actual orientation.

Fig. 3: Showing the values of the knife deflection estima-
tion and knife inclination control concept. The knife is in
a bent position (robot left pose), with estimated values of
deflection ∆X, ∆Z, ∆φ. The estimated approach vector
of the knife tip is shown as xκB , while the desired one is
xd
κ
B . The control goal to compensate the angle error ∆α

by rotating the robot flange (robot right pose).

III. Knife shape estimate

Estimating plastering tool deformation is essential for
a successful task execution. The net effect of the relative
knife pose and the exerted force can be described with
three deformation features, which are then estimated.
Our estimation method is based on a deep CNN based
black-box model with a MobileNet V2 architecture [8].
The history of CNN development is closely related to
visual scene analysis, resulting in models trained for
object detection and semantic segmentation. In this work,
we build upon the network pretrained on the ImageNet
dataset [9] and train it for deformation estimation via
transfer learning.

For the learning phase, a dataset collection experiment
is conducted, during which the ground truth labels for
the three deformation features are extracted from the
point cloud recordings of Intel RealSense D435 RGB-D
camera. First, the 3D point-cloud data of a single reading
is transformed into the 2D reading, as a vertical slice of
the data in a predefined patch. This transformation maps
the tool shape deformation in 2D space, and produces
a mean descriptor of tool slices. The procedure used in
the dataset collection is an example of an alternative
method for measuring the same deformation, using point
cloud input data. Such method can be deployed using
an RGB-D camera as in this work, or with linear laser
scanners.

Such procedures however require de-novo analytical



Fig. 4: Showing knife shape function, where three features
of knife deflection are calculated. The transparent blue
points present point-cloud reading, of a central part of the
knife tool. In the next step, the flexible part of the knife
tool is located, shown in transparent red, X ∈ [0, 0.08].
The beginning and end point of the flexible part are
shown as yellow and black points. The red line presents
polynomial fitted to points presenting flexible part of
the tool. Using the given polynomial, knife tip angle is
derived thought tip tangent, shown in green. The final
knife deflection angle is derived as angle between tip
tangent and fixed knife tool part shown in cyan.

modelling for each new estimated variable and additional
point cloud manipulation, which is computationally ex-
pensive. CNNs are more easily expanded for estimation of
multiple variables, and are better fit for highly non-linear
estimation problems.

When generating the ground truth, the tool shape
information can be extracted either with visual cues in
the RGB spectrum, or using depth information. The
latter approach is deployed here, where a discontinuity
in the derivative along z axis in the local camera frame
is identified as one end point of the tool. With an a
priori known length of the knife, the points belonging to
the tool are filtered from the identified end point next
to the mount all the way to the tip. Finally, a third
order polynomial curve is fitted to the extracted knife
profile. Two positional deformation features, ∆X and
∆Z, are obtained from the position of the knife tip, and
the third feature ∆φ describing orientation is obtained as
a derivative of the fitted polynomial at the tool tip with
respect to the tool mount. This process is also depicted
in Fig. 4.

IV. Experimental results

The evaluation of the proposed estimation method
and control system is conducted though experiments
using industrial manipulator KUKA KR10, equipped with
force-torque sensor, Intel RealSense RGB-D camera, and
specially designed plastering tool. The robot is controlled
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Fig. 5: Showing global position of knife tip in robot base
frame during the close-loop motion. The results show
that the robot adjusts the spatula tip position (Z-axis) in
order to compensate for the disturbance in the orientation
(pitch angle).

through the ROS environment and previously developed
impedance based FDCC [7] controller. The experiment is
conducted as plastering task on a piecewise-flat surface,
with a single discontinuity between two flat surfaces. This
is used to evaluate the dynamic response of the knife
inclination control. The measurements of the experiment
are shown in Fig. 5. The results clearly show the surface
discontinuity at t ≈ 12s, causing the knife deformation
witch is adjusted with global position change upon coming
into contact with a protruding surface profile.

V. CONCLUSION

In this work, deep learning is deployed in an industrial
task involving deformable object manipulation. A pre-
trained CNN architecture is trained via transfer learning
paradigm. From the raw camera images, a neural network
estimates the values of the deformation features of the
flexible robot tool. Even though deep learning has long ago
found its roles in various robotic applications, including
industrial, these were mostly at a higher control level, e.g.
as decision modules in the state machine.

In this work, we show promising results for deployment
of deep learning based inference within the lower level
robot control as well, such as in the position control
loop. To validate this, a reduced scope experimental
setup was tested, where a single deformation feature of a
flexible robot tool was controlled with the feedback signal
provided by a neural network model. The experimental
results show that the provided control architecture ensures
the tip of the knife tracks the desired attack angle, even
when submitted to abrupt (i.e. step) disturbances of the
surface level. The remaining deformation features, as well
as estimated contact force, will be used in the future
work, where the approach will be extended with a coupled
force-position controller. In this scenario, all the measured
features will be used as feedback variables, ensuring proper
knife inclination, position and applied force through the
impedance based FDCC closed control loop.
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