
Shape Control of Deformable Linear Objects with Offline and Online
Learning of Local Linear Deformation Models

Mingrui Yu, Hanzhong Zhong, and Xiang Li

Abstract— Shape control of deformable linear objects (DLOs)
is challenging, since it is hard to obtain the deformation models.
Previous studies often approximate the models in purely offline
or online ways. This abstract proposes a scheme for shape
control of DLOs, where the unknown model is estimated with
both offline and online learning, allowing for both accurate
modeling via offline learning and further updating for new
DLOs via online learning. The simulation and real-world
experiments show that the proposed method can achieve DLO
shape control better than previous works.

I. INTRODUCTION

Deformable linear objects (DLOs) refer to deformable ob-
jects in one dimension [1]. In the field of DLO shape control,
a key challenge is to obtain the exact models of DLOs,
because they are hard to calculate theoretically and vary
among DLOs [2]. Some analytical modeling methods can be
used to model DLOs [3]–[5]. However, all are approximate
models, and require accurate parameters of DLOs which
are difficult to acquire. Data-driven approaches have been
applied to learn the deformation models. A common method
is to first offline learn a forward kinematics model (FKM)
offline, and then use model predictive control (MPC) in
manipulation [6]–[9]. Reinforcement learning and imitation
learning methods have also been studied [10]–[13]. The
problem is that they are less data-efficient and may get into
trouble manipulating an untrained DLO. Apart from these
offline approaches, some studies have used purely online
methods to estimate the local linear deformation model of
manipulated DLOs, which can be applied to any new DLO
[14]–[17]. However, these online estimated models are less
accurate because only limited local data can be utilized.

In this abstract, we propose a scheme for shape control of
DLOs, where the unknown deformation model is estimated
with both offline and online learning, shown in Fig. 1.
Specifically, we use a radial-basis-function neural network
(RBFN) to model the mapping from the state to the local
linear deformation model. In the offline phase, the RBFN is
trained on random data. The offline model is then seamlessly
migrated to the online phase as an initial estimation. In the
online phase, an adaptive controller is proposed to control
the shape, in which the RBFN is further updated to adapt
to the manipulated DLO concurrently. Thus, the offline
learning and online learning complement each other. The
system’s stability is analyzed using the Lyapunov method.
Simulation and real-world experiment results are presented to

M. Yu, H. Zhong, and X. Li are with the Department of Automa-
tion, Tsinghua University, China. Corresponding author: Xiang Li (xian-
gli@tsinghua.edu.cn)

Manipulator

Offline learning

Online learning

Desired positions

DLO Features

Target points & Features

Controller

Initial model

Updated model

Online data

Offline

phase

Online

phase

Fig. 1. Overview of the proposed scheme for DLO shape control. The
shape of the DLO is represented by multiple features along the DLO. Some
of the features are chosen as target points, and the task is defined as moving
the target points to their desired positions.

demonstrate the better performance of the proposed scheme
compared with the previous methods. The full paper [18],
video, and code are available at the project website1. A
further improved work can be found here2.

II. METHODOLOGY

This abstract considers quasi-static shape control of elastic
DLOs, as illustrated in Fig. 1. Some frequently-used no-
tations are listed as follows. The vertical concatenation of
column vector a and b is denoted as [a; b]. The position
vector of the end-effectors is represented as r ∈ ℜn. The
position of the ith feature is represented as xi ∈ ℜl. The
overall shape vector of the DLO is represented as x =
[x1; · · · ;xm] ∈ ℜlm , where m is the number of the features.

A. Local Linear Deformation Model

The velocity vector of the DLO features can be locally
linearly related to the velocity vector of the end-effectors
using a Jacobian matrix [14]–[17]. Different from the previ-
ous works, we estimate the Jacobian matrix by learning the
mapping from the state (x, r) to the Jacobian matrix J :

ẋ = J(x, r)ṙ (1)

Proposition: With the quasi-static assumption, the velocity
vector of the features on the elastic DLO can be related to
the velocity vector of the end-effectors as (1).
Proof: Denote the potential energy of the elastic DLO as
E, which is assumed to be fully determined by x and r. In
the quasi-static assumption, internal equilibrium holds at all
states during the manipulation. That is, ∂E/∂x= 0 at any
state. Consider the DLO is moved from state (x̄, r̄) to state
(x̄+δx, r̄+δr) where δx and δr are small displacements of
the features and the end-effectors. Denote ∂E/∂x as g(x, r),

1https://mingrui-yu.github.io/shape_control_DLO/
2https://mingrui-yu.github.io/shape_control_DLO_2/

https://mingrui-yu.github.io/shape_control_DLO/
https://mingrui-yu.github.io/shape_control_DLO_2/


∂2E/(∂x∂x) as A(x, r), and ∂2E/(∂x∂r) as B(x, r).
Using Taylor expansion and neglecting higher order terms:

g(x̄+δx, r̄+δr) ≈ g(x̄, r̄)+A(x̄, r̄)δx+B(x̄, r̄)δr (2)

where g(x̄ + δx, r̄ + δr) = g(x̄, r̄) = 0. Assuming the
DLO has a positive and full-rank stiffness matrix around the
equilibrium point, matrix A is invertible [14]. Then, we have

δx ≈ − (A(x̄, r̄))
−1

B(x̄, r̄)δr (3)

In slow manipulations, ẋ ≈ δx/δt and ṙ ≈ δr/δt with
small δt. Then, denoting −(A(x, r))−1B(x, r) as J(x, r),
we derive (1) and prove the proposition.

Note that (1) can be rewritten as

ẋ =

 ẋ1

...
ẋm

 =

 J1(x, r)
...

Jm(x, r)

 ṙ (4)

where Jk(x, r) is the ((k − 1)l + 1)th to (kl)th rows of
J(x, r). Thus, it can be obtained that

ẋk = Jk(x, r)ṙ, k = 1, · · · ,m (5)

which indicates that different features correspond to different
Jacobian matrices.

B. Offline Learning

We apply a neural network (NN) to approximate the
Jacobian matrix, in which the input is the current state and
the output is the Jacobian. Two properties of the Jacobian can
be noticed intuitively: 1) translation-invariance: translation
of the whole DLO will not alter the Jacobian matrix; 2) ap-
proximate scale-invariance: DLOs with different lengths but
similar overall shapes may have similar Jacobian matrices.
Thus, to improve the NN’s generalization ability, we modify
the representation of the input state from [x; r] to

ϕ
△
= [x̄1; · · · ; x̄m; p̄; q0; q1] (6)

where

x̄k =

[
xk − p0

∥xk − p0∥
;

xk − p1

∥xk − p1∥

]
, p̄ =

p1 − p0

∥p1 − p0∥
(7)

(k = 1, · · · ,m), where p0, p1 are the positions of the left
and right grasped ends of the DLO, and q0, q1 are the
orientations of the left and right grasped ends.

Then, (5) can be rewritten as

ẋk = Jk(ϕ)ṙ, k = 1, · · · ,m (8)

We apply a radial-basis-function network (RBFN) [19] to
represent the actual Jacobian matrix as a function of ϕ:

vec (Jk(ϕ)) = Wkθ(ϕ), k = 1, · · · ,m (9)

where vec(·) refers to the column vectorization operator, and
Wk is unknown actual RBFN weights for the kth feature.
The θ(ϕ) represents the vector of activation functions. We
use the gaussian radial function as the activation function.
Equation (9) can be decomposed as

Jki(ϕ) = Wkiθ(ϕ), i = 1, · · · , n (10)

Input Layer RBF Neurons Output Layer

𝝓 𝜽

vec(෠𝑱𝑚)

…
…

…
…

State 

representation

Estimated 

Jacobian matrices

vec(෠𝑱2)

vec(෠𝑱1)
෢𝑾1

෢𝑾2

෢𝑾𝑚

Fig. 2. The architecture of the RBFN for learning the local linear
deformation model. The network takes the state representation in (6) as
the input and outputs the estimated Jacobian matrices.

where Jki is the ith column of Jk, and Wki is the
((i− 1)l + 1)

th to (il)
th rows of Wk. Subscribing (10) into

(8) yields

ẋk = Jk(ϕ)ṙ =

n∑
i=1

Jki(ϕ)ṙi =

n∑
i=1

Wkiθ(ϕ)ṙi (11)

where ṙi is the ith element of ṙ. The estimated Jacobian
matrix is represented as

vec(Ĵk(ϕ)) = Ŵkθ(ϕ) (12)

where Ŵ is estimated weights. The architecture of the RBFN
is shown in Fig. 2. The approximation error for the kth

feature ek is specified as

ek = ẋk − Ĵk(ϕ)ṙ

=

n∑
i=1

Wkiθ(ϕ)ṙi −
n∑

i=1

Ŵkiθ(ϕ)ṙi =

n∑
i=1

∆Wkiθ(ϕ)ṙi

(13)
We use the smooth L1 loss [20] of ek for offline training.

C. Adaptive Control through Online Learning

We propose an adaptive control scheme, in which the
offline estimated model is treated as an initial approxi-
mation and then further updated during the shape control
tasks. The target points can be any subset of the features,
whose indexes form set C. Then, the target shape vec-
tor xc and target Jacobian matrix Jc(ϕ) are denoted as
xc = [· · · ;xk; · · · ],Jc(ϕ) = [· · · ;Jk(ϕ); · · · ], k ∈ C. The
velocity vector of the robot end-effectors ṙ is controlled and
specified as

ṙ = −α
(
Ĵc(ϕ)

)†
∆xc (14)

where
(
Ĵc(ϕ)

)†
is the Moore-Penrose pseudo-inverse of the

estimated Jacobian matrix. In addition, ∆xc = xc−xc
desired

where xc
desired is the desired position vector of the target

points, and α ∈ ℜ is a positive control gain.
The online updating law of the jth row of Ŵki of the

RBFN is specified as

˙̂
W T

kij = ṙiθ(ϕ)(η1∆xkj + η2ekj), j = 1, · · · , l (15)

where ∆xkj is the jth element of the task error ∆xk, and
ekj is the jth element of the approximation error ek. The
η1 and η2 are positive scalars. Such updating is done for all
k ∈ C and i = 1, · · · , n.



TABLE I
PERFORMANCE OF THE METHODS IN 2D AND 3D DLO SHAPE CONTROL TASKS IN SIMULATION.

Methods 2D tasks 3D tasks
Offline

training samples
Success

rate
Average

task error (cm)
Average

task time (s)
Offline

training samples
Success

rate
Average

task error (cm)
Average

task time (s)

FKM+MPC 180k 82/100 1.662 10.488 180k 52/100 3.298 14.275
WLS - 85/100 0.992 14.351 - 55/100 1.940 20.214
SAC 1000k 42/100 3.185 6.486 1000k 10/100 3.412 8.070

Ours(w/o online) 30k 94/100 0.461 8.568 30k 69/100 1.446 9.521
Ours 30k 97/100 0.457 8.512 30k 92/100 1.254 9.529

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 6 (e) Case 7 (f) Case 8

Fig. 3. Some of the shape control tasks accomplished using our method in real-world experiments. The left end of the DLO is grasped by a UR5 arm
and the right end is fixed. The green+black circles represent the desired positions of the DLO features. In all cases, the DLO starts from a straight line.

(a) 2D (b) 3D

Fig. 4. The simulation environment. The blue points represent the features
along the DLO. The green points represent the desired positions of the
features.

0 2 4 6 8 10
Training data samples (×104)

0

2

4

6

8

10
-s

te
p 

pr
ed

ict
io

n 
er

ro
r (

cm
)

Forward Kinematics (MLP)
Forward Kinematics (biLSTM)
Ours

(a) 2D

0 2 4 6 8 10
Training data samples (×104)

0

2

4

6

8

10
-s

te
p 

pr
ed

ict
io

n 
er

ro
r (

cm
)

Forward Kinematics (MLP)
Forward Kinematics (biLSTM)
Ours

(b) 3D

Fig. 5. The relationship between the offline modeling accuracy and the
amount of training data.

III. RESULTS

We carry out both simulation and real-world experiments
to validate the proposed method. The simulation environment
is shown in Fig. 4. We choose three representative classes
of methods for comparison: 1) learning FKM offline and
using MPC for shape control (FKM+MPC); 2) estimating
the Jacobian matrix online using weighted least square
estimation (WLS); 3) reinforcement learning (SAC).

A. Offline Learning of the Deformation Model

We test the offline modeling accuracy on a certain DLO
and its relationship to the amount of training data, in which
we compare our local linear Jacobian model with nonlinear
forward kinematics models based on multi-layer perceptrons
(MLP) or biLSTM. The data are randomly collected in the
simulation. As shown in Fig. 5, the results indicate that our
Jacobian model can achieve higher prediction accuracy with
less training data.

TABLE II
PERFORMANCE IN REAL-WORLD 2D SHAPE CONTROL TASKS.

Methods Success
rate

Average
task error (cm)

Average
task time (s)

FKM+MPC 10/10 1.394 7.670
WLS 9/10 1.164 19.089
SAC 1/10 4.955 12.300

Ours(w/o online) 10/10 1.153 10.090
Ours 10/10 0.620 8.220

B. Shape Control with Online Learning

We evaluate the proposed control method and compare it
with other methods. If the final task error is less than 5cm,
the task is regarded successful. The average task error refers
to the average task error of only the successful cases.

1) Simulation: First, we test their performance in both
2D and 3D DLO shape control tasks in simulation. The
manipulated DLO is a new DLO not used in the offline
learning, and 100 cases with different feasible desired shapes
are tested. As shown in Table I, our method significantly
outperforms the compared methods on both success rate and
average task error, even using much less offline training data.

2) Real-world experiments: We also evaluate these meth-
ods in real-world 2D tasks, as shown in Fig. 3. The same
offline models as those in the simulation are used (no real-
world data are collected offline). We separately carry out 5
tests with different feasible desired shapes on two different
DLOs. The results are shown in Table II. Our method
completes all 10 tasks and achieves the lowest average task
error, where the online learning enables faster and more
precise control.

IV. CONCLUSION

This abstract considers the shape control of DLOs with
unknown deformation models. First, the offline learning well
initiates the estimation of the model. Then, the adaptive con-
trol scheme with online learning further updates the model
and achieves shape control. The experiments demonstrate the
effectiveness of our method. For more details, please refer
to the full paper [18].



REFERENCES

[1] J. Sanchez, J.-A. Corrales, B.-C. Bouzgarrou, and Y. Mezouar,
“Robotic manipulation and sensing of deformable objects in domestic
and industrial applications: a survey,” The International Journal of
Robotics Research, vol. 37, no. 7, pp. 688–716, 2018.

[2] J. Zhu, A. Cherubini, C. Dune, D. Navarro-Alarcon, F. Alambeigi,
D. Berenson, F. Ficuciello, K. Harada, J. Kober, X. Li, et al., “Chal-
lenges and outlook in robotic manipulation of deformable objects,”
IEEE Robotics and Automation Magazine, 2021.

[3] H. Yin, A. Varava, and D. Kragic, “Modeling, learning, perception,
and control methods for deformable object manipulation,” Science
Robotics, vol. 6, no. 54, 2021.

[4] S. Duenser, J. M. Bern, R. Poranne, and S. Coros, “Interactive robotic
manipulation of elastic objects,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2018, pp. 3476–
3481.

[5] A. Koessler, N. Roca Filella, B. Bouzgarrou, L. Lequievre, and J.-A.
Corrales Ramon, “An efficient approach to closed-loop shape control
of deformable objects using finite element models,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA), 2021.

[6] W. Yan, A. Vangipuram, P. Abbeel, and L. Pinto, “Learning predictive
representations for deformable objects using contrastive estimation,”
in 4th Conference on Robot Learning (CoRL), 2020.

[7] W. Zhang, K. Schmeckpeper, P. Chaudhari, and K. Daniilidis, “De-
formable linear object prediction using locally linear latent dynamics,”
in 2021 IEEE International Conference on Robotics and Automation
(ICRA), 2021.

[8] M. Yan, Y. Zhu, N. Jin, and J. Bohg, “Self-supervised learning of state
estimation for manipulating deformable linear objects,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 2372–2379, 2020.

[9] Y. Yang, J. A. Stork, and T. Stoyanov, “Learning to propagate
interaction effects for modeling deformable linear objects dynamics,”
in 2021 IEEE International Conference on Robotics and Automation
(ICRA), 2021.

[10] X. Lin, Y. Wang, J. Olkin, and D. Held, “Softgym: Benchmarking
deep reinforcement learning for deformable object manipulation,” in
4th Conference on Robot Learning (CoRL), 2020.

[11] L. Rita and K. Yiannis, “Learning shape control of elastoplastic
deformable linear objects,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA), 2021.

[12] A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and
S. Levine, “Combining self-supervised learning and imitation for
vision-based rope manipulation,” in 2017 IEEE International Con-
ference on Robotics and Automation (ICRA), 2017, pp. 2146–2153.

[13] T. Tang, C. Wang, and M. Tomizuka, “A framework for manipulating
deformable linear objects by coherent point drift,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 3426–3433, 2018.

[14] D. Navarro-Alarcon, H. M. Yip, Z. Wang, Y. Liu, F. Zhong, T. Zhang,
and P. Li, “Automatic 3-d manipulation of soft objects by robotic arms
with an adaptive deformation model,” IEEE Transactions on Robotics,
vol. 32, no. 2, pp. 429–441, 2016.

[15] J. Zhu, B. Navarro, P. Fraisse, A. Crosnier, and A. Cherubini, “Dual-
arm robotic manipulation of flexible cables,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2018, pp. 479–484.

[16] S. Jin, C. Wang, and M. Tomizuka, “Robust deformation model
approximation for robotic cable manipulation,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2019, pp. 6586–6593.

[17] R. Lagneau, A. Krupa, and M. Marchal, “Automatic shape control of
deformable wires based on model-free visual servoing,” IEEE Robotics
and Automation Letters, vol. 5, no. 4, pp. 5252–5259, 2020.

[18] M. Yu, H. Zhong, and X. Li, “Shape control of deformable linear
objects with offline and online learning of local linear deformation
models,” in 2022 IEEE International Conference on Robotics and
Automation (ICRA), 2022.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[20] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440–1448.


	Introduction
	Methodology
	Local Linear Deformation Model
	Offline Learning
	Adaptive Control through Online Learning

	Results
	Offline Learning of the Deformation Model
	Shape Control with Online Learning
	Simulation
	Real-world experiments


	Conclusion
	References

