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Abstract— Deformable object manipulation requires compu-
tationally efficient representations that are compatible with
robotic sensing modalities. In this paper, we present VIRDO:
an implicit, multi-modal, and continuous representation for
deformable-elastic objects. VIRDO operates directly on vi-
sual (point cloud) and tactile (reaction forces) modalities and
learns rich latent embeddings of contact locations and forces
to predict object deformations subject to external contacts.
Here, we demonstrate VIRDOs ability to: i) produce high-
fidelity cross-modal reconstructions with dense unsupervised
correspondences, ii) generalize to unseen contact formations,
and iii) state-estimation with partial visio-tactile feedback.

I. INTRODUCTION

Dexterous manipulation of deformable objects is an im-
portant open problem in robotics [1], [2]. These objects
are ubiquitous in our day-to-day lives and play a key role
in many applications including cooking, manufacturing, in-
home assistive care, and surgery. Despite their prevalence and
importance, deformable objects have received less attention
than their rigid counterparts owing to their inherent com-
plexities in modeling, perception, and controls [2]–[5]. To
illustrate, the states of rigid bodies with known geometries
can be succinctly represented with 6D pose and velocity.
However, deformable objects have an infinite continuum of
states and their representation and perception remains an
open problem [2].

In this paper, we present VIRDO – an implicit, dense,
cross modal, and continuous architecture that addresses these
fundamental representation and perception challenges for the
class of elastically deformable objects. The central feature of
our method is learning deformation fields informed by cross
modal visual and tactile cues of external contacts. We further
contribute a dataset of elastically deformable objects with
boundary conditions used to evaluate. This paper focuses on
dense geometric representations because they can facilitate
downstream tasks such as state-estimation from partial views
and estimating dense correspondences, as we demonstrate, as
well as bootstrapping keypoint/affordance learning.

Problem Statement & Assumptions : Our goal is to
derive a computationally efficient and generative model that:
1) predicts object deformations subject to external forces;
and 2) is compatible with common robotic sensors. We
assume the object geometry is described by its point cloud:
an unordered set PPP := {ppp ∈ R3 : SDF(ppp) = 0} where SDF
denotes the signed distance w.r.t. the surface of the object.
Point clouds are obtained from commodity depth sensors or
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3D scanners commonly found in industry. Contact locations
are also given as a set of points QQQ which can be given by
an upstream perception algorithm such as [6]–[8]. For the
tactile input, net reaction force is given by uuu∈R3 at the wrist
of the robot which can be measured by common industrial
F/T sensors or recovered from joint torques. In this paper,
we derive a continuous and implicit representation of the
deformed object geometry ( f (PPP,QQQ,uuu)= s) subject to external
forces and their locations. Here the object geometry is given
by the zero-level set of the implicit function; i.e. s = 0.

II. REPRESENTING DEFORMABLE OBJECTS USING SDFS

At a high-level, VIRDO decomposes object representa-
tions into a nominal shape representation and a point-wise
deformation field. Here, we choose signed distance fields
as our underlying representation and discuss this choice in
Sec. IV. The nominal shape representation decodes latent
shape embeddings ααα ∈ Rl into continuous signed-distance
fields, the zero-level set of which is the undeformed object
geometry – similar to the architectures proposed in [9]–[11].
The point-wise deformation field is produced using a sum-
mary of all boundary conditions (contact locations, reaction
force, and fixed constraints) leveraging a permutation invari-
ant set operator. The structure is fully differentiable and can
be learned end-to-end. In the following, we discuss each
component in more detail.

A. Nominal Shape Representation

The nominal shape of an object is the geometry it takes in
the absence of external contact forces. The nominal geometry
is produced by the object module as OOO(xxx|ΨΨΨo(ααα)) = s as a
signed distance field, where xxx = (x,y,z) is a query point, and
s is the signed-distance. The purpose of the object code (α)
is to allow VIRDO to represent multiple objects. Here, we
use a hyper-network ΨΨΨo(ααα) to decode the object code into
object module’s weights and biases θθθ o, similar to [12].

We pre-train VIRDO on nominal shapes before training
on deformations. During this stage, we initialize the object
codes as ααα ∼N(0,0.12) and update them with hyper-network
ΨΨΨo. The loss function for pretraining nominal shapes is:

Lnominal = Lsd f +λ2Llatent +λ3Lhyper, (1)

where Lsd f is defined as:

Lsd f =
N

∑
i=1

(
∑

x̄xx∈ΩΩΩ

|clamp(OOOi(xxx),δ )− clamp(s∗,δ )|

+λ ∑
x̄xx∈ΩΩΩ0

(1−⟨∇OOOi(xxx),nnn∗⟩)
)
.



Fig. 1: Representation Architecture: The left panel depicts how visual data in the form of point clouds and tactile in the form of reaction forces may
be collected in practical robotic settings. The middle panel depicts the network and how this information is processed to predict the implicit surface
representation encoded as a signed-distance function. Finally, the right panel depicts the reconstruction of the estimated true surface given the external
contacts and reaction force.

For convenience, we introduce a shorthand OOOi(xxx) =
OOO(xxx|Ψo(ααα iii)) to denote the signed-distance field correspond-
ing to the ith object code. Also, ΩΩΩ is the 3D querying space,
ΩΩΩ0 is the zero-level surfaces in the querying space, sss∗ is the
ground truth signed-distance, nnn∗ is the ground truth normal,
and ∇ denotes the spatial gradient. δ is for clamping off-
surface signed-distances to concentrate network capacity on
details near the surface, as demonstrated in [9]. For latent
space regularization, we impose a Gaussian prior on the
object code Llatent(ααα) = ∑

N
i=1 ∥ 1

l ααα i∥2 and weights of the
network Lhyper(θθθ o) = ∑

N
i=1

1
lo
∥θθθ

i
o∥2 where lo is the length

of θθθ o. After the pre-training, we fix the object codes as
constant vectors, but continue updating the object module
and the hyper-network with low learning rate(∼ 1e-8) for
additional refinement.

B. Deformed Object Representation

The Force Module FFF is an encoder that summarizes the
contact locations and reaction force (QQQ,uuu) into a force code
zzz = FFF(QQQ,uuu). We assume that the contact location set QQQ is
given as a subset of the nominal point cloud (QQQ ⊂ PPP) and
the reaction force uuu ∈R3 is directly measured at the robot’s
wrist. Point clouds, including the contact location set QQQ,
are unordered and variable in length. Our contact location
encoder utilizes the PointNet architecture [13].

We define the deformation field as a 3D vector field that
pushes a deformed object back to its original (nominal)
shape. VIRDO recovers the signed-distance field of the
nominal shape by adding the deformation field to the SDF of
the deformed shape. We highlight that VIRDO has learned
to focus the deformation field around the boundary of the
object with magnitude reflecting the amount of deformation.

VIRDO represents the deformation field as
DDD
(
xxx|ΨΨΨd(zzz,ααα)

)
, where the deformation module DDD shares

the same structure as the object module OOO with parameters
θθθ d predicted by the hyper-network ΨΨΨd . We highlight that
θθθ d is conditioned on the latent code pair (zzz,ααα) ∈ Rl+m to
capture the underlying object-specific deformation behavior.

This results in DDD predicting different deformation fields
for different objects despite similar contact locations and
reaction force measurements. This is desirable because
objects may be geometrically similar but deform differently
due to varying material properties. We will demonstrate
examples of this in Sec. III-B.

Using the shorthand DDDΨΨΨd (xxx) = DDD
(
xxx|ΨΨΨd(zzz,ααα)

)
, we can

relate the signed-distance fields of the deformed and nom-
inal object via s = SDF(xxx) = OOOΦΦΦo

(
xxx + DDDΨΨΨd (xxx)

)
. We note

that the deformed point cloud ppp ∈ PPP satisfies SDF(ppp) =
OOOΦΦΦo

(
ppp+DDDΨΨΨd (ppp)

)
= 0. To learn this mapping, we solve the

optimization problem argmin
θθθ d

fc(PPP), where

fc(PPP) =
(

CD(PPP+DDDΨΨΨd (PPP), P̄PP
∗
)+λc

1
P̄PP ∑

ppp∈PPP
∥DDDΨΨΨd (ppp)∥2

)
(2)

where P̄PP∗ is the true nominal point cloud of the same
length as PPP, λc is a weighting for the minimal correction
prior similar to [14] and CD is the Chamfer Distance measure
between two point clouds.

To learn the full model, we train the deformation, force,
and pre-trained object modules end-to-end using the loss
function:

Lde f ormed = fc({xxx|xxx ∈ ΩΩΩ0})+λ1Lsd f +λ3Lhyper +λ4Llatent .
(3)

The first term solves the optimization in Eq. 2 with on-
surface points. The second loss term Lsd f couples the defor-
mation field to the signed-distance field of the object module:

Lsd f =
M

∑
i=1

(
∑

xxx∈ΩΩΩ

|clamp(OOOΦΦΦo

(
xxx+DDDΨΨΨd (xxx),δ

)
− clamp(s∗,δ )|

+ ∑
xxx∈ΩΩΩ0

λn(1−⟨∇OOOi(xxx),nnn∗⟩)
)

(4)

where M is the total number of deformed objects. The
Lhyper(xxx) and Llatent(xxx) are the Gaussian prior on the latent
code and the network parameters. Since we are updating two



    

Nominal
(G.T.)

Nominal
(G.T.)

Nominal
(Recons.)

Nominal
(Recons.)

Deformed (Recons.) Deformed (Recons.)

Fig. 2: Reconstruction Results: Reconstructions of multiple nominal shapes and their deformations, learned simultaneously by VIRDO. Marching Cube
algorithm is used for the reconstruction, where we highlighted the contact location as purple region.

hyper-networks, Lhyper is the weighted sum of ΨΨΨo and ΨΨΨd
and the Llatent is ∑

N
i=1 ∥ 1

l zzz∥2.

III. EXPERIMENTS AND RESULTS
A. Data Preparation

In total, we generated 6 objects each with 24 unique
boundary conditions using MATLAB PDE toolbox. The
3D meshes were collected from open-sourced 3D model
repository. For the training, we normalized the point cloud
with the geometric center at [0,0,0].
B. Representing Known Deformable Shapes

The average reconstruction accuracy is 0.3474x103 in
Chamfer Distance(CD). CD is measured between reconstruc-
tions and query points unseen during training in average,
where we utilized Marching Cube algorithm [15] for the
reconstruction. We emphasize that only one neural network
model was used for the entire data-set.

C. Deformation Field Inference

We test the model’s ability to infer a deformation field
given reaction force, partial pointcloud, and object code,
seen from the training. Here, we infer the contact feature
to estimate deformation. First, we randomly initialize the
contact feature from N(0,0.012). Then, we update the feature
with an L1 loss which only consumes a partial zero-level
set: Lin f er = ∑xxx∈ΩΩΩooo |clamp(OOO(xxx),δ )|. The loss encourages
VIRDO to update the contact feature by minimizing the
mismatch between the initial guess and the partial observa-
tion. Fig. 3 is a partial pointcloud where the handle and the
tip are occluded, rendered in simulation with a single pinhole
camera. At epoch 0, the model already makes deformation
field fairly close to the ground truth. This shows VIRDO’s
ability to perform state estimation when the vision is missing.
As the gradient descent progresses on the contact feature, the
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Fig. 3: Inference: Reconstructions with inferred deformation field (cyan),
ground truth deformed object (magenta)

estimated deformation converges towards the ground truth.
We note that only the on-surface points are used for this
experiment, since an RGBD camera would feasibly only give
on-surface points in real-world experiments; however, it is
also possible boost the inference performance by collecting
off-surface samples along the camera ray and augment the
partial observation.

D. Generalization and Code Interpolation/Extrapolation

In this section, we evaluate VIRDO’s ability to generalize
to unseen contact formations. This functionality is important
for robotic applications given the wide variety of contact
interactions. To this end, we use the model from Sec. III-B
(trained on 144 deformations) and evaluate the reconstruction
accuracy of 6 unseen contact formations for the object



Fig. 4: a) Generalization: Example of shape estimation given unseen
contact formation during training. b) Latent Code Interpolation and
Extrapolation: Two trained force codes zzzl and zzzr are interpolated and
extrapolated evenly as shown where 1-5 indicate tested force code and
corresponding reconstruction result.

depicted in Fig.4a). To better understand the generalization
properties of VIRDO, we interpolate and extrapolate in
latent force code space. This task evaluates the continuity
and semantic meaning of the latent space; e.g. whether
the reconstructions are similar to direct inter/extrapolation
of two deformations. Given an object, we pick zzzl and zzzr
among the successfully trained force codes; zzzl bears the
maximum deflection to the left (or -x direction) and zzzr gen-
erates moderate deflections in a random direction. We then
linearly interpolate and extrapolate the 32 dimensional force
code. Fig.4b) shows the resulting reconstructions. We note
the interpolations and extrapolations are smooth, even, and
continuous. This suggests a well-formed latent force space
and explains the effectiveness of the model in generalizing
to unseen contact formations.

We note that the reconstruction for extrapolation (1) is
omitted from the object on the right in Fig. 4. This is
because of a failure case resulting in a noisy and poor quality
reconstruction. We found that the extrapolation results can be
inaccurate if it exceeds the bound of maximum deflections
seen in the training data.

IV. DISCUSSION & LIMITATIONS

The fundamental principle driving VIRDO is the ability
to learn deformation fields informed by visio-tactile sensing.
VIRDO is the first learned implicit method to integrate tactile
and visual feedback while modeling object deformations
subject to external contacts. The representation has arbitrary
resolution and is cheap to evaluate for point-wise sampling.
Additionally, the latent code is well-behaved and can be used
for inference.
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