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Abstract—Modeling and manipulating elasto-plastic objects
are essential capabilities for robots to perform complex industrial
and household interaction tasks (e.g., stuffing dumplings, rolling
sushi, and making pottery). However, due to the high degree of
freedom of elasto-plastic objects, significant challenges exist in
virtually every aspect of the robotic manipulation pipeline, e.g.,
representing the states, modeling the dynamics, and synthesizing
the control signals. We propose to tackle these challenges by em-
ploying a particle-based representation for elasto-plastic objects
in a model-based planning framework. Our system, RoboCraft,
only assumes access to raw RGBD visual observations. It trans-
forms the sensing data into particles and learns a particle-based
dynamics model using graph neural networks (GNNs) to capture
the structure of the underlying system. The learned model can
then be coupled with model-predictive control (MPC) algorithms
to plan the robot’s behavior. We show through experiments that
with just 10 minutes of real-world robotic interaction data, our
robot can learn a dynamics model that can be used to synthesize
control signals to deform elasto-plastic objects into various target
shapes, including shapes that the robot has never encountered
before. We perform systematic evaluations in both simulation
and the real world to demonstrate the robot’s manipulation
capabilities and ability to generalize to a more complex action
space, different tool shapes, and a mixture of motion modes.
We also conduct comparisons between RoboCraft and untrained
human subjects controlling the gripper to manipulate deformable
objects in both simulation and the real world. Our learned model-
based planning framework is comparable to and sometimes better
than human subjects on the tested tasks. 1

I. INTRODUCTION

Effective manipulation of deformable objects is an essen-
tial skill for robots deployed in real-world industrial and
household environments. However, due to deformable objects’
high degrees of freedom (DoF) and consequent challenges
in state estimation and dynamics modeling, manipulating
deformable objects requires significant innovations beyond
the typical robotic paradigm that focuses only on rigid ob-
jects. Recent advances show promising results in manipulating
clothes [10, 8, 17, 2, 19, 3] and ropes [18, 16], yet the
manipulation of objects with high plasticity, such as dough
or plasticine, poses a unique set of challenges and is currently
underexplored [1, 9], despite the ubiquity of such objects in
household and industrial settings. In this paper, we investigate
how to empower robots to model and manipulate elasto-plastic
objects based on raw RGBD visual observations.

1Project page: http://hxu.rocks/robocraft/.
*Denotes equal contribution, random order.
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Fig. 1: RoboCraft. The robot uses a parallel 2-finger gripper
to shape an ‘X’ conditioned on the target shape at the top right
corner. The result is shown at the bottom right corner.

The primary challenges of manipulating deformable objects
stem from their high DoFs, partial observability, and complex
non-linear local interactions. Learning dynamics models di-
rectly from high-dimensional sensory data offers a promising
data-driven avenue for us to perform effective planning. For
example, model-based reinforcement learning (RL) algorithms
have achieved great success in various planning and control
tasks [14, 12, 7]. However, when faced with elasto-plastic
objects, these prior methods may fail due to a lack of ex-
plicit exploitation of the objects’ structure. Another thread
of works represents deformable objects using particles and
employs graph neural networks (GNNs) to model their dynam-
ics [11, 5, 6, 13, 15]. They have shown great generalization
results, demonstrating the benefits of explicit structured mod-
eling. However, most of them require full-state information
and a particle-based simulator to provide particle-to-particle
correspondence between frames. Such strong supervision is
difficult to obtain from raw sensory data, limiting their use
in real-world applications. Hence, the natural question to ask
here is: would it be possible to model the dynamics and
manipulate elasto-plastic objects in the real world solely based
on RGBD visual observations, without needing particle-to-
particle temporal correspondence?

To tackle this problem, we propose RoboCraft, a model-
based planning framework that represents elasto-plastic objects
using particles, but employs distribution-based loss functions

http://hxu.rocks/robocraft/


Fig. 2: Overview of RoboCraft. (a) The perception module obtains the particle representation from RGBD cameras. The
algorithm first crops out the object point cloud, then samples particles to represent the object. (b) The dynamics model predicts
the object’s deformation based on graph neural networks (GNN). (c) After obtaining the learned dynamics model, we apply a
combination of sampling- and gradient-based trajectory optimization techniques to solve the model-predictive planning problem.

and makes novel improvements over recently-developed GNNs
to model the objects’ dynamics. The learned dynamics model
is then coupled with gradient-based trajectory optimization
techniques to plan the robot’s behaviors. The proposed ap-
proach closes the perception and control loops, which allows
accurate modeling and manipulation of the elasto-plastic ob-
jects in both simulated and real-world settings. Specifically,
our framework consists of (1) a perception module that con-
structs the particle representation of the object by sampling
from the reconstructed object mesh, (2) a dynamics model
that models the particle interactions using GNNs, and (3) a
planning module that uses model-predictive control (MPC)
and solves the trajectory optimization problem using gradients
from the learned model. Unlike prior learning-based particle
dynamics works which assume temporal correspondence [11,
5, 6, 13, 15], we train the dynamics model directly from
raw visual data using loss functions that measure the distance
between predicted and observed particle distributions.

II. METHOD

A. Problem Statement

The objective of this work is to use a parallel 2-finger robot
gripper to shape an elasto-plastic object to match a target shape
g. Specifically, we focus on using a sequence of pinching
actions a0,...,T−1 ∈ A, given an observation of the initial state
s0 of the plasticine. At time step t, the robot applies action
at ∈ A upon the plasticine, and the state of the plasticine
transitions from st to st+1 in response.

To predict the complex dynamics of the deformable plas-
ticine, we propose to use a graph neural network (GNN) Φ to
learn the transition function Φ : S × A → S . This dynamics
model takes as input environment observations st−h,...,t ∈ S
and actions at−h,...,t ∈ A and predicts a future observation
ŝt+1, where h is the length of history and t is the current
time step. With the learned dynamics model in hand, we
can naturally formulate the manipulation task as a model-
predictive control (MPC) problem. The cost function J of
the MPC problem measures the distance between the state of
the plasticine at the last time step T and the target shape g.
And a sequence of actions of length T can be selected by
minimizing the cost function:

(a0, ...,aT−1) = argmin
a0,...,T−1∈A

J (Φ(s0, (a0, ...,aT−1)),g) (1)

Figure 2 shows the overall framework of RoboCraft.

III. EXPERIMENTAL RESULTS

A. Results in Simulation

We use a physics simulator based on Material Point Method
(MPM) from previous work [4]. In Figure 3, we visualize the
procedure of manipulating the object towards the target shape
using a gradient-based method. We find that the agent can
handle various challenges such as small grooves in the letter
‘E’ and asymmetry in the letter ‘Z’. This demonstrates that
the method can leverage the GNN-based dynamics model for
effective manipulation under the MPC framework.
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Fig. 3: Manipulation result in the simulation. On the left
are the manipulation steps. On the right are the result and its
overlay with the target point cloud. The cyan point cloud is
the target, blue the result.

t

Result TargetManipulation Steps

Fig. 4: Manipulation results on a real robot. On the
left are the shaping steps. On the right are the results and
corresponding target point clouds. We want to emphasize that
our model is learned purely from offline data collected via
random interactions (10 minutes); thus, the target shapes have
never been seen during training. Yet our pipeline can still
achieve these targets with reasonable accuracy.

B. Learning Real-World Manipulation of Deformable Objects

The proposed method is able to manipulate the plasticine
to shapes that are unseen in the training data. Example
trajectories of the robot manipulating the plasticine are shown
in Figure 4. The method successfully identifies the asymmetry
in the target shape ‘B’ by putting the finger closer to one
side of the plasticine at the beginning of the grip. For more
complex shapes such as the letter ‘A’, the method also seems to
creatively discover a solution that roughly achieves the target
shape. These results illustrate that, although the task is very
challenging, our method is able to perform well with a small
amount of training data.

TABLE I: Results of human subjects and the robot in the
simulator. Numbers are averaged over all the tested shapes.

Methods CD↓ EMD↓

Human Subjects 0.0655 ± 0.025 0.0661 ± 0.023
RoboCraft (ours) 0.0359 ± 0.007 0.0340 ± 0.005
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Fig. 5: Shaping results by amateur humans and RoboCraft.
Results in the first two rows are from human subjects. The
results in the third row are from the robot. The left two
columns are results in the simulation. The right two columns
are the results in the real world.

C. Results on Comparing with Human Performance

We invited four amateur humans to perform the same
task with the robot gripper in both simulation and real-
world settings. While humans are not trained to manipulate
plasticine, they usually have strong intuitive understandings
of the dynamics of plasticine. Each user was asked to shape
three pieces of plasticine in each domain. For the simulation
experiments, we provided a successful manipulation video as
an example for the users and allowed two trials for each
shape since the dynamics in the simulation were also new
to each human. In the real world, we allowed the users
to play with the plasticine for one minute before resetting
it to the starting shape for the experiment. In Table I, we
show the average distance over all the target shapes from
four users, in comparison with that of our agent. Empirical
evidence suggests that the proposed tasks are challenging for
both manipulation algorithms and untrained human subjects
alike. We also find that RoboCraft is comparable to or stronger
than amateur humans on the tested tasks. One observation is
that RoboCraft outperforms humans in the distance metrics.
However, the visualized human results are recognizable even
when the distances are high, suggesting that better evaluation
metrics are desired. In Figure 5, we show the outcome from
both human users and the robot for comparison.
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