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Abstract— We present a novel Learning from Demonstration
(LfD) method, Deformable Manipulation from Demonstrations
(DMfD), to solve deformable manipulation tasks using states or
images as inputs, given expert demonstrations. Our method uses
demonstrations in three different ways, and balances the trade-
off between exploring the environment online and using guidance
from experts to explore high dimensional spaces effectively.
We test DMfD on a set of representative manipulation tasks
for a 1-dimensional rope and a 2-dimensional cloth from the
SoftGym suite of tasks, each with state and image observations.
Our method exceeds baseline performance by up to 12.9% for
state-based tasks and up to 33.44% on image-based tasks, with
comparable or better robustness to randomness. Also, we create
two challenging environments for folding a 2D cloth using image-
based observations, and set a performance benchmark for them.
We deploy DMfD on a real robot (sim2real gap ∼6%).

I. INTRODUCTION

Autonomous dexterous robotic manipulation is challenging.
For rigid objects, challenges include estimating pose and mass
distribution, grasp prediction, and real world grasp planning.
Obtaining the state and dynamics for deformable objects is
much harder than for rigid objects. Even with ‘full’ state in-
formation, deformable manipulation is very high dimensional,
making it more challenging than rigid manipulation [1].

Our method, Deformable Manipulation from Demonstra-
tions (DMfD), is a learned agent for deformable manipulation
using expert data three ways. We leverage an advantage-
weighted formulation [2], [3] in the loss function, with expert
samples (pre-populated in the replay buffer) appropriately
weighted to encourage the policy to mimic expert actions.
Finally, during experience collection, we use reference state
initialization [4], where the agent is reset along an expert
trajectory with some probability. We then compare the state
trajectories of the expert and agent, helping exploration in
difficult to reach states. Fig. 1 shows rollouts of our method
for challenging image-based manipulation tasks.
Contributions: We propose a novel method (DMfD) for a
learning agent to absorb expert guidance (from human exe-
cution or hand-engineered methods), while learning to solve
challenging deformable manipulation tasks online.

• DMfD solves deformable manipulation tasks for state and
image based observations using expert data in three ways.
Our online training loss formulation balances exploring
online and mimicking experts.
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(a) Straighten Rope (left) and Cloth Fold (right) tasks

(b) Cloth Fold Diagonal Pinned (left) and Unpinned (right) tasks

(c) Real world execution of Cloth Fold Diagonal Unpinned Task

Fig. 1: Learning Deformable Manipulation. DMfD is a learned agent
achieving state-of-the-art performance (among methods that use expert
demonstrations) for deformable manipulation tasks. We set a new performance
benchmark on the Straighten Rope and Cloth Fold tasks (Fig. 1a) from
SoftGym [5], both with two end effectors, shown as white spheres. We also
introduce tasks for one end effector - the Cloth Fold Diagonal tasks, where
a square cloth is folded diagonally, with pinned and unpinned (Fig. 1b)
varieties. Fig. 1c shows the real world execution of the unpinned variety.

• DMfD outperforms baselines on state- and image-based
environments (by up to 12.9% and 33.44% respectively).
It outperforms experts it was trained on for some tasks.

• We create two challenging variants of a new folding task
and deploy our system on a real world for the unpinned
variant.

II. BACKGROUND
Autonomous deformable manipulation is a challenge with

many real-world applications such as folding clothes, cook-
ing, or assisting humans [6]–[9]. Analytical methods such as
Finite Element Method [10] and Material-Point Methods[11]
are used to model object dynamics. Control methods such
as trajectory optimization [12]–[15] and model predictive
control [16] are used to manipulate objects. However, they
might not generalize to environment variations. Data-driven
methods are popular for manipulation tasks [17], including
Imitation Learning (IL) [18]–[23], Reinforcement Learning
(RL) [24]–[28], and their combination [29]–[32]. However,
most successes have been in rigid body manipulation.

Here, we focus on deformable object manipulation using
expert-guided RL. Learning from expert Demonstrations (LfD)
has been applied to deformable manipulation tasks like bed
making [33] and manipulating beads, cloths, and bags [34].
Reinforcement learning has been applied to manipulation of
ropes, cloths, and liquids [5], [35], sometimes with vision [7],
[36]–[40]. Combining RL with LfD can balance expert guid-
ance with online exploration [29]–[31]. Deep Mimic [4] uses
Reference State Initialization (RSI) to initialize from high-
value states, mitigating such exploration costs. Advantage



Fig. 2: Method schematic. The environment (replay buffer B) gives observa-
tions during experience collection (training). Pre-populated expert demonstra-
tions are Green. Training works with state-based or image-based observations.
For state observations, the actor and critic get a state encoding (oQ =
oπ = os), shown as Black and Blue arrows. For image observations, the
actor gets an image encoding and the critic gets image & state encodings
(oπ = oimg , oQ = os ∪ oimg), shown as Black and Red arrows.

Weighted Actor Critic (AWAC) [3] uses implicit policy con-
straints to learn from experts offline, followed by online fine-
tuning. We show that RL, with intelligent use of expert data,
significantly improves deformable manipulation performance.

III. FORMULATION AND APPROACH

We formulate deformable manipulation as a partially ob-
servable Markov decision process (POMDP) with state space
S, action space A, observation space O, discount factor γ,
horizon H , dynamics T : S×A → S and reward r : S×A →
R. The discounted reward at time t is Rt =

∑H
i=t γ

ir(si,ai)
where si ∈ S,ai ∈ A. Additionally, tasks are generalized
over variants V indicating object properties. The initial state
is a function of the variant, s0(v), v ∼ V .

The problem is to find the policy π ∈ Π, that maximises the
expected discounted reward Eτ∼π(τ),v∼V [R0] of an episode
over variants and distribution induced by policy, subject to
st+1 = T (st,at), and initial state s0(v). π(τ) is the like-
lihood of trajectory τ under π and s0(v). Additionally, we
assume expert trajectories E are readily available through a
demonstration dataset.

Our objective is maximizing expected improvement over
sampled transitions from a replay buffer B. This formulation
is similar to Advantage-Weighted Regression (AWR) [2] with
experience replay over a mixture of policies. We create an
advantage-weighted objective for a policy with parameters θ,

LA = E
s,a∼B

[
log πθ(a|s) exp

(
1

λ
Aπ(s,a)

)]
(1)

λ is a temperature parameter (see [2] for a complete deriva-
tion). We use the standard critic loss LQ = EB[∥qϕ,B−b∥2] to
minimize error between the Q-estimate and Bellman update.
A. Deformable Manipulation from Demonstrations (DMfD)

Since state-estimation is hard for deformables, we extend
the problem to make the policy act on an observation, πθ(a|o).

DMfD learns both from a pre-populated replay buffer B
(with expert trajectories E) and online environment interaction.
Online interaction allows DMfD to find better trajectories than
E , enabling it to exceed the expert.

Secondly, we balance exploration with exploitation [41] by
requiring the policy to minimize an entropy loss term,

LE = E
s,a,o∼B

[α log πθ(a|o)−Q(s,a)] (2)

Our policy loss is a wE-weighted combination,

Lπ = (1− wE)LA + wELE , 0 ≤ wE ≤ 1 (3)

While collecting experience, we reset the robot to an
expert’s state with probability pη , and compare the agent’s
generated trajectory to the expert’s, giving an imitation reward.
This reference state initialisation (RSI) was introduced in
DeepMimic [4] to help explore hard to reach high-dimensional
states. Our method uses this idea to help mimic the expert
during the initial stages of training.

Our actor and critic networks have hidden layers with tanh
activation. A Convolutional Neural Network (CNN) encoder
and random image crops [37] are added for image-based
training. Fig. 2 shows these architectures. Note the critic also
gets state input in addition to the observation. This privileged
information helps stabilize it [42].

IV. EXPERIMENTS

A. Tasks and Experimental Setup

We test on the tasks below with state or image observations
as applicable. Object states are encoded with their object-
specific reduced-state. Image observations are 32x32 RGB
images showing the object and robot end-effector. Each task
has a set of variants, where the deformable object’s properties
vary for effective domain randomization.

1) Straighten Rope: Stretch the rope a fixed distance
apart, to straighten it. The reduced state is the (x, y, z)
coordinates of 10 equidistant points including rope ends.

2) Cloth Fold: Fold a flattened cloth into half, along an
edge, using two end-effectors. The reduced state is the
(x, y, z) coordinates of each corner.

3) Cloth Fold Diagonal Pinned (Unpinned): Fold the
square cloth along a specified diagonal, with a single
end-effector, and one corner pinned (unpinned). The
reduced state is the (x, y, z) coordinates of each corner.
These are two new tasks we introduce.

Image-based environments are more difficult to solve than
state-based environments. Hence, we focused on image inputs
for the two novel Cloth Fold Diagonal tasks. This gives 6 test
environments: 4 from SoftGym (state and image inputs for
Straighten Rope and Cloth Fold) and 2 new tasks (image inputs
for Cloth Fold Diagonal). Demonstrations are hand-coded for
variants v ⊆ V , using full state and dynamics.

We use normalized performance in [0, 1] from SoftGym,

p̂(t) =
p(st)− p(s0)

popt − p(s0)
(4)

where p(st) is the env-specific performance at state st at time
t, and popt is the best possible performance. As in SoftGym,
we compare performance at the end of the episode, p̂(H).

B. Performance Comparisons

We compare our method with LfD baselines AWAC [3],
BC [20], SAC-LfD (SAC with pre-populated expert data in
the replay buffer), and SAC-BC (SAC with initialized actor
networks from pre-trained BC-Image on expert demonstra-
tions). We also compare with non-LfD baselines SAC, SAC-
CURL [36], and DrQ [37].
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(a) Straighten Rope State
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(b) Straighten Rope Image
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(c) Cloth Fold Diagonal Pinned Image
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(d) Cloth Fold State
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(e) Cloth Fold Image
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(f) Cloth Fold Diagonal Unpinned Image

Fig. 3: State-of-the-art comparisons. Learning curves of normalized performance p̂(H) for all environments during training, until convergence. The first
column(3a & 3d) shows SoftGym state-based environments. The second column(3b & 3e) show SoftGym image-based environments, and the third column
(3c & 3f) show our new Cloth Fold Diagonal environments. State-based DMfD is light blue, image-based agent is dark blue, and expert performance is black.
Behavioural Cloning does not train online; its results are shown as constant gray line. The means µ are plotted as solid lines, and one standard deviation
(µ± σ) is the shaded region. We find that DMfD consistently beats the baselines, with comparable or better variance.

Fig. 3 shows the training curves of our method against
baselines for all environments. As the environments increase
in difficulty, our method outperforms baselines by increased
margins for state-base and image-based environments.

C. Discussion

When comparing with experts, Fig. 3 shows that our state-
based agents beat the oracle in both state environments.
However, the image-based agents are, at best, comparable to
the expert, since they do not have privileged state information.

We see the performance gap between DMfD and baselines
increase with task difficulty. In a hard task like Cloth Fold
Image (Fig. 3e), baselines perform at or below 0 after training.

State-based environments: DMfD’s multiple uses of expert
data is one main reason why it performs better than SAC,
which does not use expert data. This significantly affects
performance on hard state-based tasks like Cloth Fold.

Conversely, AWAC can achieve better performance on diffi-
cult tasks with expert data. However, no entropy regularization
causes AWAC’s vulnerability to reach local optimums in
training, causing its higher variance than DMfD and lower
robustness to randomness. As seen in Fig. 3a, high variance
after 1M steps leads to its performance deteriorating.

Image-based environments are harder to solve, and our
method outperforms the baselines even further. Our critic
is privileged with state data, helping it estimate the value
function better. The use of expert data, with the exploration

due to entropy regularization, helps our method outperform
baselines with comparable or better variance.

Although the baselines have state-of-the-art methods for
learning with vision, only the LfD baselines incorporate expert
demonstrations, such as BC. In fact, BC outperforms CuRL
and DrQ in some environments despite training offline. BC
however has drawbacks such as covariate shift and sensitivity
to environmental changes. Fig. 3c and Fig. 3f show very
different BC performance between the Pinned and Unpinned
Cloth Fold Diagonal tasks, even though they are similar.
Additionally, BC cannot exceed the expert performance.

Our experiments show DMfD matches or outperforms base-
lines across environments, and is robust to noise.

V. CONCLUSION

Deformable Manipulation from Demonstrations (DMfD) is
a novel method leveraging expert demonstrations and outper-
forms state-of-the-art LfD methods for deformable manipula-
tion tasks. We demonstrate the effectiveness of our method on
six tasks, including two new challenging cloth folding tasks
we created. We show a consistent and significant performance
improvement over baselines in state-based environments (up
to 12.9%) and an even higher improvement on tougher image-
based environments (up to 33.44%). We observe comparable
or lower variance than the baselines, indicating higher robust-
ness to noise. Finally, we conducted real robot experiments
and achieved a minimal sim2real gap (∼6%),
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