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Abstract—The success of deep learning depends on large
datasets, but in deformable object manipulation collecting these
datasets is time-consuming, and therefore learning from small
datasets is an important open problem. Data augmentation is a
common solution to this problem, but most existing methods focus
only on computer vision tasks. We propose an optimization-based
approach to data augmentation for manipulation of deformable
objects. The proposed method solves for rigid body transfor-
mations to trajectories of geometric state and action data that
maximize validity, relevance, and diversity objectives. We test
our method on the previously studied problem of learning a
classifier of model accuracy [1]. We evaluate on a bimanual rope
manipulation task both in simulation and in the real world, and
we find that training with augmentations significantly increases
the task success rate.

I. INTRODUCTION

While interest in applying deep learning to robotic ma-
nipulation has recently increased, the lack of cheap data has
proven to be a significant limitation [2, 3]. This is especially
problematic for deformable object manipulation, because small
datasets will inevitably have poor coverage of the state space,
and accurate simulation datasets are missing or incomplete. To
enable applications such as smart and flexible manufacturing,
logistics, and care-giving robots [4], we must improve methods
that learn from small real world datasets.

One of the simplest and most effective ways to mitigate
the problem of small datasets is to use data augmentation
[5, 6, 7, 8, 9, 10, 11, 12]. Data augmentation is the technique of
generating new examples by modifying existing ones. While
data augmentation has been shown to significantly improve
generalization performance in tasks like image classification,
these methods operate on different types of data and labels
and are not applicable to many manipulation problems. Fur-
thermore, most existing augmentation methods have one of
two limitations: They are either restricted to operations which
are valid on all examples [13, 12, 9, 8], or rely on training
a generative model (VAE, GAN, etc.), which do not perform
well on small datasets [14, 15, 5].

In our problem statement (Section II), we formalize data
augmentation as an optimization problem based on three key
criteria: validity, relevance, and diversity. We then design
objective functions based on these ideas, specifically for ma-
nipulation. We do not claim that this formulation is useful for
all manipulation problems, and we clearly define the physical
assumptions behind this formulation in Section II.

Fig. 1: A mock-up of a car engine bay. The robot must move
the rope and place it under the engine without snagging it
to set up for lifting the engine. We use data augmentation to
improve task success rate during online learning for this task.

Our contribution is a method that tackles this specialized
augmentation problem. Our method operates on trajectories
of object (including robot) poses and velocities, and our
augmentations are rigid-body transformations applied to the
moving objects in the scene. Our method encourages valid-
ity by preserving contacts and the influence of gravity. We
encourage relevance by initializing the augmentations nearby
the original examples and preserving motion near obstacles.
Finally, we encourage diversity by pushing the augmentations
towards uniformly randomly sampled targets.

We show that training on our augmentations increases the
success rate on a bimanual rope manipulation task, both in
simulation and in the real world (Figure 1). We test augmen-
tation on the problem of learning a classifier of dynamics
model error, as in [1]. Training is online, which means we
augment data and fine-tune the network after each batch of
data is collected. In the real robot experiment, augmentation
increased the success rate from 27% to 50% in only 30 trials.

II. PROBLEM STATEMENT

In this section, we define the form of data augmentation
studied in this paper. We define a dataset as a list of examples x
and, optionally, labels y. Augmentation is a stochastic function
x̃ ∼ ϕ(x) which takes an example and produces an augmented
example. If the dataset contains labels y, we assume that the
label is not changed by augmentation.



Fig. 2: Example augmentations generated by our method. The rope start (dark blue) and end (light blue) states are shown, plus
the grippers at the start state. The environment is in brown, with the simplified engine block in the center. The left half shows
three augmentations which preserve the original deformation on the engine block, and the right half shows three particularly
diverse augmentations where the rope is in free space.

A key insight is that objects in the scene can be categorized
as either robots, moved objects, or stationary objects, and
that these should be considered differently in augmentation.
Treating all moved objects as one category is one of the
reasons why our method can handle scenes with many moving,
possibly deformable, objects.

We denote the moved objects state as s, the robot state as
r, the robot action as a, and the stationary objects as e (also
called environment). Our method augments the moved object
states, the robot state, and the actions, but not the stationary
objects. Variables indexed by time are shown in boldface, and
augmented state variables are shown with a tilde. With this,
we can write augmentation as ϕ(s, r,a, e) → {s̃, r̃, ã, e}.
We formalize six objective functions which encourage validity,
relevance, and diversity. The result is Problem (1):

min
T

LU(T, T
target) + β1Lbbox(s̃) + β2Lvalid(T )+

β3Locc(s̃, e) + β4L∆d−(s̃, e)+
Lrobot(s̃, r̃, ã, e)

s.t. {s̃, r̃, ã} = apply(s, r,a, T )
T target ∼ U[T−, T+]

(1)

The decision variable is the SE(3) transform T , which is
applied in the apply function. We propose that diversity
should be maximized by the transforms being uniformly
distributed, and therefore LU penalizes the distance to a target
transform T target sampled uniformly within [T−, T+]. The
magnitudes of different terms are balanced by β1, β2, β3, β4. In
our experiments, we use β1 = 0.05, β2 = 1, β3 = 1, β4 = 0.1.
We define the other terms in Section III-A, and describe how
we solve this problem in Section III-B.

A. Assumptions

Our method for solving Problem (1) relies on the following
assumptions:

• The geometry of the robot and all objects is known.
• The scene can be decomposed into objects which can be

assigned or detected as either moving or stationary.
• Examples are time-series, consisting of at least two states.
• All possible contacts between stationary vs. moving ob-

jects have the same friction coefficient.
• Contacts between the robot and objects/environment (e.g.

grasps) can be determined from the data.

• A rigid-body transformation of an object preserves inter-
nal forces (e.g. friction between fibers of a rope).

• Objects only move due to contact or under the force of
gravity (e.g. we do not handle magnetism or wind).

• Class labels are preserved under augmentation.
Notably, the assumption that a rigid-body transformation

preserves internal forces is what allows us to handle cluttered
scenes with many moving objects, as well as deformable or
articulated objects. While it could be valuable to augment the
deformation or relative motion of the objects, doing so in a
way that is valid would be challenging. Instead, we transform
them all rigidly (See examples in Figure 2). Naturally, there are
scenarios where these assumptions do not hold and thus where
our algorithm may not perform well. However, our rope ma-
nipulation experiment demonstrates significant improvement,
and we expect these assumptions extend to other scenarios.

III. METHODS

In this section, we propose specific definitions for the
objective terms in Problem (1) and explain how we solve it.

A. Objective Functions

1) Bounding Box Objective: The bounding-box objective
is defined as Lbbox =

∑
(max(0, s̃− s+) + max(0, s− − s̃)),

which keeps the augmented state s̃ within the workspace/scene
bounds defined by [s−, s+] by summing the bounds violations
over all state dimensions. The bounding box objective encour-
ages relevance, since states outside the workspace are unlikely
to be relevant for the task.

2) Transformation Validity Objective: The transformation
validity objective Lvalid assigns high cost to transformations
that are always invalid or irrelevant, and is a function of only
the transformation. For example, in our rope manipulation
case, it is nearly always invalid to rotate the rope so that it
floats sideways. This term can be chosen manually on a per-
task basis, but we learn it from simulation data.

3) Occupancy Objective: The occupancy objective encour-
ages validity by ensuring that the occupancy O(p) of each
point p̃s,i ∈ p̃s in the augmented object state matches the
occupancy of the corresponding original point ps,i ∈ ps.
For this term, we directly define the gradient, which moves
p̃s,i in the correct direction when the occupancies do not
match. We use the signed distance field (SDF) computed
from the environment geometry. The objective is Locc =
SDF(p̃s,i)

(
O(ps,i)−O(p̃s,i)

)



Fig. 3: The success rate on bimanual rope manipulation in
simulation, using a moving window average of 10. Each
iteration consists of planning, execution, and fine-tuning.

4) Delta Minimum Distance Objective: The delta minimum
distance objective encourages relevance by preserving near-
contact events. We preserve near-contact events because they
may signify important parts of the task, such as being near
a goal object or avoiding an obstacle. We define the point
among the moved object points ps which has the minimum
distance to the environment pd− = argminps,i

SDF(ps,i). The
corresponding point in the augmented example we call p̃d− .
The objective is L∆d− = ||SDF(pd−)− SDF(p̃d−)||2.

5) Robot Contact Objective: The robot contact objective
Lrobot encourages validity of the robot’s state and the action.
Any grasps or contacts involving the moved objects which
existed in the original example must also exist in the aug-
mented example. Let the contact points on the robot be pcr
and the contact points on the moved objects’ state be pcs. The
objective is Lrobot =

∑
i ||pcr,i − pcs,i||2

B. Solving the Augmentation Optimization Problem

We solve Problem (1) by splitting it into two parts.
a) Part 1: We optimize the transform T while consider-

ing all terms except Lrobot. This step alternates between step-
ping towards a uniformly randomly sampled target transform
T target to optimize LU, and optimizing the other four terms
with gradient descent.

b) Part 2: We optimize Lrobot. This corresponds to
computing the augmented robot state r̃ and action ã given
the augmented state information s̃ and the environment e.
Minimizing Lrobot means preserving the contacts the robot
makes, which we do with inverse kinematics.

IV. EXPERIMENTS AND RESULTS

Our experiments are designed to show that training on
augmentations generated by our method improves performance
on a downstream task. The task and methodology is based on
prior work, and more details can be found in [1].

A. Bimanual Rope Manipulation

In this task, a bimanual robot holds the ends of a rope
in a scene resembling the engine bay of a car. The rope is
represented as 25 points. The complex deformation of the rope
makes learning from a small dataset difficult, which motivates

data augmentation. The robot plans trajectories from a single
start to a single goal using an approximate model of the rope
dynamics. These dynamics are inaccurate in some regions, and
so the planner uses a learned classifier of model accuracy to
avoid inaccurate transitions. The robot learns this classifier
online, iteratively planning, executing, and collecting the data
to update the classifier. We apply our data augmentation to the
problem of learning this classifier.

In this experiment, 25 augmentations were produced for
each original example, and examples are shown in Figure 2.
The primary result is shown in Figure 3. Over the course of
100 iterations, the success of our method using augmenta-
tion is higher than the baseline of not using augmentation.
Additionally, we include a baseline which adds independent
Gaussian noise to each dimension of the state, robot, action,
and environment data. The shaded regions show the 95th
percentile over 10 runs. If we analyze the success rates
averaged over the final 10 iterations, we find that without
augmentation the success rate is 48%, but with augmentation
the success rate is 70%. The Gaussian noise baseline has a final
success rate of 31%. A one-sided T-test confirms statistical
significance (p < 0.001).

B. Real Robot Results

In this section, we perform a similar experiment to the
simulated bimanual rope manipulation experiment, but on
real robot hardware. This demonstrates that our method is
also effective on noisy sensor data. More importantly, it
demonstrates how augmentation enables a robot to quickly
learn a task in the real world.

We ran the rope classifier learning procedure with a single
start configuration and a single goal region, both with and
without augmentation. After 30 iterations of learning, we stop
and evaluate the learned classifiers 26 times. With augmenta-
tion, the robot successfully placed the rope under the engine
13/26 times. Without augmentation, it succeeded 7/26 times.
Videos showing learning progress and task execution can be
found in the supplementary video.

V. CONCLUSION

This paper proposes a novel data augmentation method
for trajectories of geometric state and action data. We argue
that augmentations should be valid, relevant, and diverse,
and use these to formalize augmentation as optimization. By
leveraging optimization, augmentations are not limited to only
operations valid on all examples. On the other hand, there are
problems where the proposed objective functions do not ensure
validity, relevance, and diversity. In these cases, new objective
functions may be developed.

Our results show significantly better downstream task per-
formance when training on small datasets (≈3k examples). In
simulated bimanual rope manipulation, the success rate with
augmentation is 70% compared to 47% without augmentation.
We also perform the bimanual rope manipulation task in the
real world, where the success rate improves from 27% to 50%
with the addition of augmentation.
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