
Deep Recurrent Models for Nonlinear Model Predictive Control in
Deformable Manipulation Tasks

James A. Preiss*, David Millard*, Tao Yao*, Gaurav S. Sukhatme†

Abstract— We propose a method for robotic control of
deformable objects using a learned nonlinear dynamics model.
After collecting a dataset of trajectories from the real system,
we train a recurrent neural network (RNN) to approximate
its input-output behavior with a latent state-space model.
The RNN internal state is low-dimensional enough to enable
realtime nonlinear control methods. We demonstrate a closed-
loop control scheme with the RNN model using a standard
nonlinear state observer and model-predictive controller. We
apply our method to track a highly dynamic trajectory with
a point on the deformable object, in real time and on real
hardware. Our experiments show that the RNN model captures
the true system’s dynamics and can be used to track trajectories
outside the training distribution. In an ablation study, we find
that the full method improves tracking accuracy compared to
an open-loop version without the state observer.

I. INTRODUCTION AND RELATED WORK

Manipulating deformable objects represents a challenging
area of robotics. In contrast to typical objects consisting of
a single rigid body, deformable objects often admit limited
control authority and have dynamics that are difficult to
predict. At the same time, many objects of human interest
are deformable. Safe, reliable robotic manipulation of these
objects is critical for capable general-purpose robots [1], [2].

Physics-based models of deformable objects have been
studied extensively in science and engineering contexts [3].
Recent work with Finite Element Method (FEM) modeling
addresses dynamic control of deformable objects and soft
robots with offline trajectory optimization [4]–[9]. FEM is
appealing as it admits extensive theoretical analysis [10],
[11]. For real-world problems, it is possible to estimate
the parameters of FEM meshes in a principled way from
exteroceptive sensors common in robotics [12]. Alternative
discretizations include the material point method [13], [14],
(extended) position based dynamics [15], and meshless shape
matching [16].

Deformable objects are complex to model, and even high-
resolution FEM approaches have significant inductive biases.
In this light, purely data-driven methods are an appealing
alternative to physics-based models. Machine learning meth-
ods have been explored in deformable manipulation [17],
for purely kinematic trajectory tracking [18], for cable-driven

All authors are affiliated with the University of Southern California.
* Equal contribution. {japreiss,dmillard,taoyao}@usc.edu
† G.S. Sukhatme holds concurrent appointments as a Professor at USC

and as an Amazon Scholar. This paper describes work performed at USC
and is not associated with Amazon.

This work was supported in part by a NASA Space Technology Research
Fellowship, grant number 80NSSC19K1182.

An expanded version of this work has been accepted to the 2022 IEEE
Conference on Robotics and Automation.

Fig. 1. Physical testbed for our method. Trajectories are tracked by a Vicon
motion capture marker attached to the end of a pool noodle, rigidly held by
a Franka Emika Panda robot. Pitch/yaw inputs ū = (φ, ψ), tracking point
measurement ȳ, and coordinate axes (X,Y, Z) shown. (The fiducial marker
visible in the image is not used.)

soft robot actuators [19], for control of pneumatic deformable
mechanisms [20], and for structures actuated by shape-
memory alloys [21]. Other data-driven approaches studied
in soft robot control include proper orthogonal decomposi-
tions [22].

We propose a data-driven method for modeling and
trajectory-tracking control of a deformable object at a speed
where the passive dynamics are the dominant behavior of the
system. Our method models the dynamics with a long short-
term memory (LSTM) recurrent neural network (RNN) [23],
[24], trained in a standard sequence modeling setup using
input-output trajectory data from a real physical system. The
internal state of the learned RNN is not physically meaning-
ful, but the RNN still forms a discrete-time dynamical system
that is compatible with standard methods in state-space
nonlinear control. We apply model-predictive control [25]
and extended Kalman filtering methods [26] to track the
trajectory using the RNN model. We find that closed-loop
control with our method reduces trajectory tracking error
compared to an open loop trajectory optimizer.

II. PROBLEM SETTING AND PRELIMINARIES

We consider a robot manipulating a deformable object
such that a particular point on the object tracks a given tra-
jectory. We use the following notation: The special Euclidean
group of rigid transformations in three-dimensional space
is denoted by SE(3). The notation A � 0 (resp. A � 0)
indicates that the matrix A is positive semidefinite (resp.



Interact
with object

Train Recurrent
Neural Network Extended Kalman Filter

Model Predictive Control

Robot, Object, Motion Capture

D θ

x̂

y

u

Preparation Testing

Fig. 2. Diagram of our system. A small dataset of control inputs and tracked marker locations is obtained from the real system. A recurrent neural network
(RNN) model is trained to predict input/output behavior with a latent state. The RNN forms the nonlinear dynamics model for an extended Kalman filter
(EKF) and model-predictive controller (MPC) to track a dynamic input trajectory with the deformable object.

definite). We assume that the robot has already rigidly
grasped the object, that we can accurately measure specific
points on the object, and that the robot does not know the
specific target trajectory during its data collection stage.

Our control policy interacts with the system in dis-
crete time steps of fixed length ∆t. Our control task is
specified by a discrete-time signal of K goal positions
z[1], . . . , z[K] ∈ R3 for the tracked point and the cost func-
tion

J =
∑K
k=1 ‖z[k]− ȳ[k]‖ 2

W , (1)

where the weighting matrix W � 0 encodes a (potentially)
non-isotropic tracking objective.

III. METHODS

A. Data collection

We begin by collecting a training dataset D containing N
input-output trajectories from the real system. We denote by
ū[j, k] and ȳ[j, k] the input and output from the kth time step
of the jth trajectory in D. Before starting each trajectory,
we apply the identity input and allow the system to settle
for several seconds (10 in our experiments) to ensure that
the system returns to a state very close to the rest state
x̄0. We then apply random sinusoidal pitch and yaw inputs.
with frequency ν sampled log-uniformly between 1/8 Hz and
3 Hz. The maximum angular acceleration of a sinusoid is
given by 2πAν2, where A is a uniformly sampled amplitude.

B. RNN dynamics model

We represent the system state as the hidden state of a
learned RNN. The RNN is a generic function approximation
scheme parameterized by a real-valued vector θ, and consists
of a discrete-time dynamics model

x[k + 1] = fθ(x[k], u[k]), y[k] = hθ(x[k]), (2)

where x ∈ Rn is the internal state, u is the input, y is the
output, and fθ and hθ are the dynamics and measurement
functions respectively. Both fθ and hθ are differentiable with
respect to their arguments and the parameter θ.

The RNN is trained on the dataset D to minimize a regres-
sion loss on the input-output map over complete sequences:

minimize
θ

N∑
j=1

Kj∑
k=1

‖ȳ[j, k]− hθ(x[j, k])‖22 (3)

where Kj is the length of the jth trajectory. The fixed
initial state of 0 is justified in our setting because each

trajectory in D begins at the rest state x̄0. The optimization
problem (3) is solved with stochastic gradient descent (SGD)
using backpropagation.

C. Model-predictive control with reduced-order model

We use the RNN model in a model-predictive control
(MPC) framework to optimize the trajectory-tracking ob-
jective (1) in an online manner. We solve the short-horizon
optimal control problem

minimize
ū[k],...,

ū[k+H−1]

H∑
i=1

‖z[k + i]− hθ∗(x[k + i])‖2W +R(u)

subject to x[k] = x̂[k], (4)
x[k + i+ 1] = fθ∗(x[k + i], ū[k + i]) ∀i

where H � K is the MPC horizon and R is a quadratic
regularization function to smooth the control signal and to
return to the rest state absent other goals. Solving (4) yields
a sequence of inputs ū∗[k], . . . , ū∗[k +H − 1] optimized to
track the next H steps of the full goal trajectory. Following
the standard moving horizon architecture, we apply only the
first input ū∗[k] from the solution to the real system. Then,
at time step k + 1, we solve a new instance of (4). We
obtain an approximate solution with a few steps of gradient
descent with momentum, reusing the momentum between
MPC problems.

D. Estimating the RNN state

In Section III-C, we assumed the availability of a RNN
state x̂[k] that is consistent with previous inputs and out-
puts from the real-world system. Because the RNN model
is not perfect, the true outputs ȳ[1], . . . , ȳ[k − 1] obtained
from the real-world system may diverge from the outputs
hθ∗(x[1]), . . . , hθ∗(x[k − 1]) predicted by applying the RNN
model in an open-loop manner.

Instead we observe that, although the RNN state has no
direct physical meaning, its hidden state can be estimated
from the input-output history using standard techniques from
estimation theory. In particular, we apply an extended
Kalman filter (EKF) to the RNN model. The EKF maintains
a Gaussian-distributed belief over the RNN state with mean µ
and covariance Σ. We use the mean of the belief distribution
as the initial state for the MPC problem (4), x̂[k] = µ[k].



TABLE I
VALUES OF USER-CHOSEN CONSTANTS IN OUR EXPERIMENTS.

Q EKF process covariance 10−6I
R EKF measurement covariance 10−2I

H MPC horizon 25
α MPC smoothness weight 1.0
β MPC homing weight 1e-1
— MPC gradient descent rate 4e-1
— MPC gradient descent steps 5

— LSTM layers 1
n Reduced state dimension 200
— LSTM SGD steps 1e4
— LSTM SGD learning rate 1e-3
— LSTM SGD batch size 10

N # trajs. in dataset 100

E. Implementation

For the RNN reduced-order dynamics model fθ, we use
the long short-term memory (LSTM) architecture [23]. Nu-
merical values of the architectural and training hyperparam-
eters are listed in Table I. We train the RNN in PyTorch
[27]. We also solve the model-predictive control problems
and implement the EKF in PyTorch. We run the MPC control
loop at 40 Hz.

IV. EXPERIMENTS

In all experiments, our deformable body is a thin cylinder
of uniform closed-cell polyethylene foam, commonly known
as a pool noodle, with length 1.5 m and diameter 6.5 cm,
rigidly attach to a Franka Emika Panda robot end effector.
To track the object, we attach a rigid assembly of motion
capture markers and track its full pose with a Vicon motion
capture system. Our experimental setup is shown in Figure 1.

A. MPC tracking

We apply our method to track several test trajecto-
ries which attempt to expose the controller’s performance
with regard to resonant dynamics. The goal trajectories
z[1], . . . , z[K] ∈ R3 are specified by the user. As described
in eq. (1), our tracking cost W = diag(0, 1, 1) is non-
isotropic. to focus only on tracking in the Y- and Z-axes.

We show the results from three trajectories in Figure 3.
The first two trajectories are a circle of diameter 0.6 m and
a figure-8 Lissajous curve of width 1 m and height 0.4 m.
To expose open-loop control deviations, the circle and the
vertical axis of the Lissajous curve are set to the system’s
resonant frequency 0.8 Hz as determined experimentally. The

−0.5 0.0 0.5

y

−0.6

−0.4

−0.2

0.0

z

circle

−0.5 0.0 0.5

y

lissajous

−0.5 0.0 0.5

y

rectangle

goal closedloop openloop

Fig. 3. Two-dimensional projections of paths traced by pool noodle free
end in MPC tracking experiments.

TABLE II
MPC TRACKING ERRORS

max error (cm) mean error (cm)
shape kind

circle closedloop 12.59 5.59
openloop 29.15 11.61

lissajous closedloop 9.19 4.43
openloop 14.85 4.77

rectangle closedloop 14.60 6.34
openloop 14.62 6.01

third trajectory is a rectangle with constant linear velocity
throughout.

To show that the EKF observer provides meaningful feed-
back to the controller (the “closed-loop” setup), we compare
it to a setup that assumes the predicted feedforward state,
i.e. the value yielded by applying the RNN dynamics fθ∗ to
the full sequence of past inputs, is always correct (the “open-
loop” setup). The results of this comparison are visualized in
Figure 3, and the tracking errors are compared numerically
in Table II.

For the circle trajectory, we observe significantly improved
performance in both mean and maximum error from the
closed-loop setup. Over time, the open-loop solution drifts
towards stronger resonance in the vertical axis and weaker
resonance in the horizontal axis. In contrast, the error of
the closed-loop solution does not grow over time, indicating
that our EKF setup is able to compensate for model error.
For the Lissajous trajectory, the closed-loop setup yields a
minor improvement in mean tracking error but a significant
improvement in maximum error. The rectangle trajectory
shows little difference between the open- and closed-loop
approaches, but it is noteworthy that both approaches track
the rectangle reasonably, even though it is physically infea-
sible and not similar to the training data. This result suggests
that the LSTM model behaves reasonably for sequence inputs
that are dissimilar to those in the training data.

V. CONCLUSION

We have described and demonstrated a system to manip-
ulate a deformable object such that a particular point on the
object tracks a fast trajectory. Our approach is completely
data-driven, and requires a fixed initial data-collection phase,
without further exploratory actions. We model our dynamical
system as an LSTM recurrent neural network and design a
closed-loop nonlinear MPC controller, with an EKF state
observer. We validate our model on a real hardware setup
with a robot manipulator holding a foam pool noodle, mea-
sured by a motion capture system. Our experiments show that
closing the loop with the EKF observer improves tracking
performance compared to an open loop control scheme for
several of the test trajectories.

In future work, we aim to improve tracking accuracy by
investigating other nonlinear state estimation methods and
MPC implementations.



REFERENCES

[1] V. E. Arriola-Rios, P. Guler, F. Ficuciello, D. Kragic, B. Siciliano,
and J. L. Wyatt, “Modeling of deformable objects for robotic
manipulation: A tutorial and review,” Frontiers in Robotics and AI,
vol. 7, p. 82, 2020.

[2] J. Zhu, A. Cherubini, C. Dune, D. Navarro-Alarcon, F. Alambeigi,
D. Berenson, F. Ficuciello, K. Harada, X. Li, J. Pan, and W. Yuan,
“Challenges and outlook in robotic manipulation of deformable ob-
jects,” CoRR, vol. abs/2105.01767, 2021.

[3] G. A. Holzapfel, “Nonlinear solid mechanics: A continuum approach
for engineering science,” Meccanica, vol. 37, no. 4, pp. 489–490, Jul.
2002.

[4] S. Zimmermann, R. Poranne, and S. Coros, “Dynamic manipulation of
deformable objects with implicit integration,” IEEE Robotics and Au-
tomation Letters, vol. 6, no. 2, pp. 4209–4216, Apr. 2021, conference
Name: IEEE Robotics and Automation Letters.

[5] J. M. Bern, P. Banzet, R. Poranne, and S. Coros, “Trajectory optimiza-
tion for cable-driven soft robot locomotion.” in Robotics: Science and
Systems, vol. 1, 2019, issue: 3.

[6] S. Duenser, J. M. Bern, R. Poranne, and S. Coros, “Interactive robotic
manipulation of elastic objects,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018,
pp. 3476–3481.

[7] Y. Li, T. Du, K. Wu, J. Xu, and W. Matusik, “DiffCloth: Differ-
entiable cloth simulation with dry frictional contact,” arXiv preprint
arXiv:2106.05306, 2021.

[8] Y.-L. Qiao, J. Liang, V. Koltun, and M. C. Lin, “Scalable differentiable
physics for learning and control,” arXiv preprint arXiv:2007.02168,
2020.

[9] E. Heiden, M. Macklin, Y. Narang, D. Fox, A. Garg, and F. Ramos,
“DiSECt: A differentiable simulation engine for autonomous robotic
cutting,” arXiv preprint arXiv:2105.12244, 2021.

[10] J. Barbič and J. Popović, “Real-time control of physically based sim-
ulations using gentle forces,” ACM transactions on graphics (TOG),
vol. 27, no. 5, pp. 1–10, 2008.

[11] M. Thieffry, A. Kruszewski, C. Duriez, and T.-M. Guerra, “Control
design for soft robots based on reduced-order model,” IEEE Robotics
and Automation Letters, vol. 4, no. 1, pp. 25–32, 2018, publisher:
IEEE.

[12] D. Hahn, P. Banzet, J. M. Bern, and S. Coros, “Real2sim: Visco-elastic
parameter estimation from dynamic motion,” ACM Transactions on
Graphics (TOG), vol. 38, no. 6, pp. 1–13, 2019, publisher: ACM New
York, NY, USA.

[13] D. Sulsky, Z. Chen, and H. L. Schreyer, “A particle method
for history-dependent materials,” Computer Methods in Applied
Mechanics and Engineering, vol. 118, no. 1, pp. 179–196, Sep. 1994.

[14] Y. Hu, J. Liu, A. Spielberg, J. B. Tenenbaum, W. T. Freeman, J. Wu,
D. Rus, and W. Matusik, “ChainQueen: A real-time differentiable

physical simulator for soft robotics,” Proceedings of IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2019.

[15] M. Macklin, M. Müller, and N. Chentanez, “XPBD: position-based
simulation of compliant constrained dynamics,” in Proceedings of the
9th International Conference on Motion in Games, 2016, pp. 49–54.

[16] M. Muller, B. Heidelberger, M. Teschner, and M. Gross, “Meshless
deformations based on shape matching,” p. 8.

[17] N. M. Mirza, “Machine learning and soft robotics,” in 2020 21st
International Arab Conference on Information Technology (ACIT),
Nov. 2020, pp. 1–5.

[18] J. M. Bern, Y. Schnider, P. Banzet, N. Kumar, and S. Coros, “Soft
robot control with a learned differentiable model,” in 2020 3rd IEEE
International Conference on Soft Robotics (RoboSoft), May 2020, pp.
417–423.

[19] D. Bruder, B. Gillespie, C. D. Remy, and R. Vasudevan, “Modeling
and control of soft robots using the koopman operator and
model predictive control,” arXiv:1902.02827 [cs], Jul. 2019, arXiv:
1902.02827.

[20] M. T. Gillespie, C. M. Best, E. C. Townsend, D. Wingate, and
M. D. Killpack, “Learning nonlinear dynamic models of soft robots
for model predictive control with neural networks,” in 2018 IEEE
International Conference on Soft Robotics (RoboSoft), Apr. 2018, pp.
39–45.

[21] A. P. Sabelhaus and C. Majidi, “Gaussian process dynamics models
for soft robots with shape memory actuators,” in 2021 IEEE 4th
International Conference on Soft Robotics (RoboSoft), Apr. 2021, pp.
191–198.

[22] S. Tonkens, J. Lorenzetti, and M. Pavone, “Soft robot optimal
control via reduced order finite element models,” arXiv preprint
arXiv:2011.02092, 2020.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997, publisher: MIT Press.

[24] Z. C. Lipton, “A critical review of recurrent neural networks for
sequence learning,” CoRR, vol. abs/1506.00019, 2015.

[25] F. Allgöwer and A. Zheng, Nonlinear model predictive control.
Birkhäuser, 2012, vol. 26.

[26] R. Kalman, “A new approach to linear filtering and prediction prob-
lems,” Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45, 1960,
publisher: Citeseer.

[27] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative
style, high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d. Alché-Buc, E. Fox, and R. Garnett, Eds.
Curran Associates, Inc., 2019, pp. 8024–8035.


