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Abstract— Cloth manipulation is common in domestic and
service tasks, and most studies use fixed-base manipulators to
manipulate objects whose sizes are relatively small with respect
to the manipulators’ workspace, such as towels, shirts, and
rags. In contrast, manipulation of large-scale cloth, such as bed
making and tablecloth spreading, poses additional challenges
of reachability and manipulation control. To address them,
this paper presents a novel framework to spread large-scale
cloth, with a single-arm mobile manipulator that can solve
the reachability issue, for an initial feasibility study. On the
manipulation control side, without modelling highly deformable
cloth, a vision-based manipulation control scheme is applied
and based on an online-update Jacobian matrix mapping
from selected feature points to the end-effector motion. To
coordinate the control of the manipulator and mobile platform,
Behavior Trees (BTs) are used because of their modularity.
Finally, experiments are conducted, including validation of the
model-free manipulation control for cloth spreading in different
conditions and the large-scale cloth spreading framework.
The experimental results demonstrate the large-scale cloth
spreading task feasibility with a single-arm mobile manipulator
and the model-free deformation controller.

I. INTRODUCTION

Cloth manipulation is critical because it is basic for
many downstream applications such as household service
[1], elderly care [2], and surgery scenarios [3]. Cloth ma-
nipulation tasks are challenging since the cloth is highly
deformable and difficult to be modelled accurately. In this
work, we consider one of the common cloth manipulation
tasks, spreading large-scale cloth over a supporting surface,
by using model-free manipulation control and a single-arm
mobile manipulator. For large-scale cloth, its size is larger
than the workspace of the manipulator’s end-effector. This
means that a fixed-base manipulator may not be able to finish
cloth manipulation tasks such as a spreading task (see Fig.
1). Unlike [4], we will not fix any sides of the cloth; in other
words, the cloth can move freely on the supporting surface.
This case demands more efforts to manipulate the cloth given
only a single grasping point. For example, pulling the cloth
along a fixed direction as in [4] may make a part of the
large-scale cloth out of the supporting surface, which may
fail the task.

The main contributions of this work are
1) Proposing a model-free large-scale cloth spreading frame-
work based on behavior trees that allows us to manipulate
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Fig. 1. A single-arm mobile manipulator is spreading cloth with Grasping
Point 3. Obviously, the end-effector cannot reach Grasping Point 1 if the
mobile platform does not move. To reduce unnecessary movement, it is
also expected to manipulate the features as many as possible towards the
target in one standing position. For example, instead of manipulating corners
(features) one by one, Feature 2 and 3 can be manipulated to the target
(white circles) together. Overall, for large-scale cloth spreading, a mobile
platform is necessary to be included and the manipulation control should be
able to cover multiple features if possible. All features and grasping points
are selected around the corners to focus on the feasibility study.
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Fig. 2. Schematics of the proposed model-free large-scale cloth spreading
framework.

cloth with a mobile manipulator;
2) Demonstrating the effectiveness of the control algorithm
and proposed framework experimentally, thus validating
the feasibility of using mobile manipulation for large-scale
model-free cloth spreading.

II. MODEL-FREE LARGE-SCALE CLOTH
SPREADING FRAMEWORK

A. Overview

We propose a behavior-tree-based framework for cloth
spreading, as shown in Fig. 2, which consists of two main
parts: a mobile platform and a robotic manipulator. Two
parts are coordinated by a behavior tree. One is the legged
robot (Unitree A1), allowing us to reach any feasible space.
Another is the six Degrees of Freedom (DoFs) robotic arm
(INNFOS GLUON). A two-finger gripper is attached to
the arm. This framework is also applicable to other mobile
platforms such as wheeled robots and legged-wheeled robots.
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Fig. 3. Behavior tree of the proposed model-free large-scale cloth spreading
framework.

B. Behavior Tree (BT)

Compared with one-way FSMs, BTs are able to alleviate
the limitations on modularity, re-usability, and reactivity.
Following the terms in [5], a standard BT has one root
node, and the execution starts from this node. Signals (ticks)
are then sent to a leaf node. After the leaf node executes,
the status is sent to its parent. This mechanism makes BTs
different from FSMs. Fig. 3 shows the BT design for the
proposed model-free large-scale cloth spreading framework.

C. Model-Free Deformation Control

Following [6], we describe the deformation in a model-free
paradigm. Specifically, to manipulate the deformable cloth,
k feature points are selected on the cloth. The i-th feature
point is denoted as

si “ rxi, yi, zis
T , (1)

and si is assumed to be measurable. For a compact notation,
the feature point vector can be denoted as

s “ rsT1 , s
T
2 , ..., s

T
k sT P R3k. (2)

Assumption 1: When manipulating the deformable cloth,
we assume each feature point can be locally described by a
smooth function, si “ gipxq. Then, the relationship between
the feature point vector and the end-effector position is s “

gpxq, where g “ rgT
1 , ..., g

T
k sT . Note that g is unknown.

Based on these feature points, an m-DoF deformation task
y can be defined as y “ rpsq. The task can be designed
explicitly, as mentioned in [6]. To implement the task, a
velocity controller of the end-effector can be designed as

u “ J:Kpy˚ ´ yq, Jpxq :“
Brpsq

Bs

Bgpxq

Bx
, (3)

where K ą 0 and p¨q: denotes a left pseudoinverse operation
if m ą p or a right pseudoinverse operation if m ă p. Jpxq

is called as Deformation Jacobian Matrix, and it maps the
end-effector motion to the evolution of the defined task. The
Jacobian will be updated online by using the Broyden rule.

Fig. 4. Errors of feature position in cloth deformation condition 1 (3 trials).

Fig. 5. Errors of feature position in cloth deformation condition 2 (3 trials).

III. INITIAL EXPERIMENTAL RESULTS

A. Experimental Setup

To study the task feasibility, without loss of generality,
we use a legged manipulator to manipulate a piece of cloth
(35 cm ˆ 72 cm) within a horizontal plane. We assume
the cloth’s shape is rectangle-like, but our method is not
limited by the shape. The cloth was initially put on a
table with a height of 0.28 m. As shown in Fig. 1, four
feature points (ArUco markers) close to each corner were
selected. An overhead camera (Intel® RealSense™ depth
camera D435) was used to detect and locate each feature
point, and the depth information was ignored here. A motion
capture system (Vicon) was used to locate the legged robot
and the overhead camera. In the validation of the deformation
controller, all positions were expressed in the body frame of
the legged robot, while all were expressed in the Vicon frame
in the validation of the framework.

B. Validation of Model-Free Deformation Control

Two cloth deformation conditions were shown. The error
is defined as ||sdsr ´ s||, where sdsr P R8 is the desired
position for four features. In the first condition (Fig. 4),
three trials are displayed and all of them converged to the
error of less than 0.032 m after around 28 s. The final cloth
condition is almost fully flattened. Fig. 5 shows another
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Fig. 6. Experiment of a large-scale cloth spreading task with the proposed framework.

initial deformation condition where the initial positions of
Feature 2 and 3 were much farther from the target (initial
error: 0.524 m). The model-free deformation controller still
can make the error converge to the value of less than 0.030 m,
but the manipulation duration became longer (36 s). From
the results of the two conditions, a steady state error was
found for each trial. This was mainly because the visual
measurement noise would affect the feature localization and
further inject disturbance into the Jacobian update process.
To improve the control performance, a more precise and
robust feature localization method is needed, which will be
our future work.

C. Validation of Large-Scale Cloth Spreading Framework

To validate the proposed framework, we set the cloth
condition that requires multiple operations at different stand-
ing positions. Running BTs helps to specify the grasping
points and thus the trajectory of the mobile platform can
be planned accordingly. As shown in Fig. 6, the mobile
platform’s trajectory is plotted (blue solid line). Fig. 6(a)
shows its starting status. Once finishing the first manipulation
(Figs. 6(i-iii)), it moved to the next location (Fig. 6(d))
following the predefined waypoints with a safe distance
(see Figs. 6(b-c)). When manipulating the cloth at the first
standing position, the cloth condition change is shown in
Figs. 6(i-iii)). With the deformation control, the two feature
points on the left side were manipulated to the predefined
target. Figs. 6(iv-vi) show the cloth manipulation at the
second standing position. After establishing the contact, the
manipulator moved two feature points on the right side to

the target. At the same time, the feature points on the left
side were not affected and the cloth was fully spread finally.

The experimental results demonstrate the effectiveness of
the proposed framework and the feasibility of spreading
large-scale cloth in the sense of model free. Of course,
the framework can be further improved. For example, the
distance between the mobile platform and the table can be
smaller for saving occupying space, via motion planning
in narrow space (e.g., [7]). Besides, an optimal grasping
point selection strategy can be designed to improve cloth
manipulation efficiency and minimize the travelling path of
the mobile platform.

IV. CONCLUSIONS
This paper presented a model-free large-scale cloth spread-

ing framework based on BTs. The introduction of the mo-
bile platform eliminates the limitation on the workspace.
Without the need of modelling the cloth, a vision-based
deformation control was applied to manipulate the cloth.
Both the deformation control and cloth spreading framework
have been verified experimentally. The results show the
feasibility of spreading large-scale cloth using a single-
arm mobile manipulator and a model-free control approach,
paving the way to manipulating large-scale cloth with more
complex conditions (e.g., highly crumpled conditions). In the
future, extra components will be integrated into the current
framework, such as onboard perception and action planning
modules. Different cloth materials will be tested and the
framework will be applied to more practical scenarios like
in households.
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