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Abstract—Robotic manipulation of deformable objects is a
challenging task that has been tackled with a variety of ap-
proaches. However, due to the highly difficult task of modeling
the dynamics of deformable objects in a fast and accurate way,
many real-world use cases remain unsolved. Recent advances in
data-driven approaches like reinforcement learning (RL) promise
that these methods push forward the envelope of feasibility
in the field of deformable object manipulation. Despite the
growing interest in this field, data-driven approaches mainly
focus on the manipulation of 1D and 2D deformable objects
like ropes and cloth. In this work, we present the benchmark
DeformableGym to facilitate the evaluation of RL methods for
grasping 3D deformable objects. We use a set of simulated
benchmark environments to evaluate existing model-free state-
of-the-art algorithms and investigate the main challenges and
potential pitfalls of applying them in this challenging setting.

Index Terms—Reinforcement Learning, Robotic Grasping, Vol-
umetric Deformable Objects

I. INTRODUCTION

Manipulation of deformable objects is an important skill
for robots in a large variety of tasks. Examples include
human interaction, assistive robotics, medical use cases, or
robotic surgery in non-industrial settings. Examples in in-
dustrial settings include fruit harvesting, food processing, or
packaging of deformable objects. While recent advances in
the field of robotic control have shown impressive results
[24], these were mostly limited to entirely rigid environments.
Despite a growing interest of the research community in the
manipulation of deformable objects (DO), these efforts are
largely focused on 1D (linear) or 2D (planar) DOs. When
it comes to the manipulation of 3D (volumetric) DOs, the
majority of works aim to solve the task of controlling the
shape of an object, while the problem of grasping 3D DOs
remains largely unexplored, especially when it comes to data-
driven approaches such as reinforcement learning (RL). This
is likely due to the lack of accurate models for 3D DOs.

We propose to use a simulation of 3D DOs and rigid robotic
hands in combination with model-free RL to obtain a solution
to manipulation problems in form of a policy. The advantage
of this approach is that the computationally expensive DO
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Fig. 1. Selection of available grasping environments in Deformable-
Gym. Top: grasping process in MiaInsoleOnConveyor environment. Middle:
ShadowFloatingPillow environment. Bottom: MiaFloatingInsole and Shad-
owFloatingInsole environments.

model only has to be computed during training time and is
not required during test time because the solution is encoded
in a learned policy, which allows real-time application as it
is easier to compute. The RL framework allows us to easily
obtain closed-loop policies that take into account contact force
measurements, so that generalization over unknown objects
and other variations of the problem is possible.

II. RELATED WORK

Enabling robotic systems to manipulate deformable objects
promises new applications in the industrial, service, and
healthcare sectors. However, in comparison to rigid objects,
deformable object manipulation (DOM) offers challenges in
a multitude of domains such as gripper design, sensing,
modeling, planning, and control [1], [5], [20], [39]. These
challenges arise primarily due to the high dimensional state
representation and complex dynamics of deformable objects
[20], [22], [23].



Deformable objects can be categorized as uniparameteric
(linear), biparametric (planar or cloth-like), and triparametric
(volumetric) [28]. While significant work has been done to-
wards manipulation of uniparameteric and biparametric objects
[19], [21], [27], [34], [35], triparametric objects are the least
researched, primarily due to their high computation costs for
simulation. Recent advances in computing facilitate real-time
simulation of realistic deformations [28].

There exist several approaches for 2D DOM based on im-
itation learning [27], model-based approaches [14], planning-
based strategies to grasp elastic foam objects with a Shadow
Dexterous hand using tactile feedback [4], supervised learning
and planning for a two-armed robot using haptic data [9], or
RL for cloth manipulation [36]. In the domain of 2D DOM,
SoftGym [18] is a set of benchmarks for RL. There exist
several approaches for 2D DOM based on imitation learning
[27], model-based approaches [14], planning-based strategies
to grasp elastic foam objects with a Shadow Dexterous hand
using tactile feedback [4], supervised learning and planning
for a two-armed robot using haptic data [9], or RL for cloth
manipulation [36]. In the domain of 2D DOM, SoftGym [18]
is a set of benchmarks for RL.

Methods for 3D DOM include the following. [16], [17] pro-
pose a deformation-aware, data-driven grasp synthesis method
by adding information about object stiffness to state-of-the-
art (SotA) grasp planner based on depth images. [7] present
a FEM-based control approach for dexterous manipulation
of 3D deformable objects. They use a multi-fingered hand
for deformation control by applying closed-loop inverse kine-
matics (CLIK) in Cartesian space. The planner combines
a contact interaction model with non-linear isotropic mass-
spring system to guarantee stable grasps. However, this work
is restricted to open-loop control. [12] learn a deformation
model which is used in a visual servoing feedback controller
to actively manipulate objects to match a given target shape.
[38] present a grasp planner for a BarrettHand mounted on an
industrial arm for grasping deformable objects. This approach,
however, requires an accurate estimate of the object’s location.
[13] present DefGraspSim, a simulation that can be used to
evaluate the quality of grasps of 3D DOs and a set of grasp
features that can be used to evaluate grasps. [31] present a
simulation framework for manipulating complex volumetric
DOs in realistic scenes and use it for shape control through
planning based on feedback from camera images. [37] provide
a model-based strategy for grasping 3D DOs with multi-
fingered hands that uses tactile sensors of the hand.

In previous work [6] we focused on generating initial open-
loop reaching motions from human demonstrations. Object
pose estimation errors and deformations might lead to unsuc-
cessful grasps that we want to refine with closed-loop policies
obtained through RL.

Our contribution is a closed-loop, model-free approach to
grasp 3D DOs that relies on force measurements in the
fingers of the hand to compensate for errors of the pose
estimation of the object based on RL. We use multi-fingered,
anthropomorphic hands. In addition, we provide a benchmark

that can be used to evaluate RL algorithms for grasping of
DOs, and test existing algorithms on it to establish baselines.

III. DEFORMABLEGYM

In order to facilitate progress and research in the field
of robotic grasping of 3D DOs with RL, we propose
DeformableGym1 (see Figure 1). DeformableGym uses Py-
Bullet [3] with the stable Neo-Hookean model [32] to simulate
3D DOs, as its underlying physics engine and implements the
OpenAI Gym interface [2], allowing easy set-up and testing
with commonly used, standard libraries of SotA algorithms,
e.g., stable-baselines3 [26].

A. Configuration Options

DeformableGym contains a variety of highly configurable
learning environments that allow an easy evaluation of dif-
ferent control mechanisms, i.e., position control or velocity
control, closed-loop servoing or open-loop viapoint control.
Furthermore, the modular implementation allows to use dif-
ferent types of robotic setups and deformable objects in each
grasping task. For instance, currently supported robotic hands
are the Prensilia Mia Hand [25] and the Shadow Dexterous
Hand [30]. Each gripper can be used in a floating scenario or
a complete scenario, in which the gripper is mounted on a UR
robotic arm [33].

DeformableGym contains the robots MiaHand (i.e., floating
Mia hand), ShadowHand, URMia (i.e., Mia hand mounted
on UR arm), URShadow; and the objects FloatingInsole,
FloatingPillow, ConveyorInsole (i.e., insole on conveyor belt).
Figure 1 shows a selection of the available environments.

B. Object Meshes

Volumetric object simulation requires tetrahedral meshes.
We obtained surface meshes of real DOs by measuring their
dimensions and modeling them in blender. Then we applied
TetWild [11] to convert these surface meshes to tetrahedral
volume meshes. PyBullet requires Lamé parameters, which
we compute from estimates of Poisson’s ratio and Young’s
modulus of the real DOs.

C. Observations, Actions and Rewards

We define the environment’s action space A as the gripper’s
pose offset and finger velocity. The observation space S
contains the current end-effector pose, the force-torque sensor
information, and the current position of the object. In the
case of the Mia hand, this leads to a 10-dimensional action
space and a 16-dimensional observation space. In all grasping
environments, we do not rely on complicated, hand-crafted
reward functions, but instead use a sparse binary reward signal
in combination with a simple grasp success condition. We
consider a grasp to be successful if the grasp object does not
fall below a certain height within a given time frame at the
end of an episode. Successful grasps result in a reward of 1,
unsuccessful grasps in a reward of −1. All intermediate steps
receive an immediate reward of 0.

1Source code available at https://github.com/dfki-ric/deformable gym



IV. EXPERIMENTS

We use DeformableGym to benchmark existing SotA
model-free RL algorithms in order to identify specific chal-
lenges when trying to solve 3D DO grasping using RL. We
intend to answer the following research questions:

• Can current SotA RL algorithms solve the problem of 3D
DO grasping using a sparse reward formulation?

• Are learned policies able to generalize to task variations?
• Can adversarial exploration speed up the learning of

robust policies?
• How should we model states to solve the grasping task

sample-efficiently?

A. Experimental Setup

To answer these questions, we trained policies with SAC
[10], TD3 [8], and PPO [29] using a variety of training
regimens and observation formulations in the MiaInsoleOn-
Conveyor environment. In this setting, the agent needs to grasp
an insole that is placed on a conveyor belt (see Figure 1). To
facilitate the running of experiments and to ensure comparable
and high-quality implementations of the used algorithms, we
use stable-baselines3 [26] for our evaluation. We test three
different training regimens: fixed, randomized, and adversarial
exploration, which we denote using the suffixes -F, -R, and -
A, respectively. In the fixed setup, the initial hand position
is identical throughout the entire training process. In the
randomized setup, the initial position is sampled uniformly
from a 6 cm x 6 cm area around the fixed initial position in
the x-y plane. The adversarial exploration setup uses the fixed
initial position in combination with an adversarial framework
[15] to set the hand’s initial position based on the grasping
policy’s current knowledge. We also evaluate the effect of
using a history of observations, i.e., compare the performance
when using only the current observation and when using a
stack of the past four observations. The hyperparameters of
the algorithms were tuned in a previous set of experiments.

B. Evaluation

We evaluate the policies’ robustness by testing their ability
to grasp the same object but from different initial positions at
the beginning of each grasping attempt. These evaluations are
done by systematically varying the initial pose in form of a
grid of 25 initial end-effector positions in a 6 cm x 6 cm area
in the x-y plane.

C. Results

Figure 2 shows exemplary learning curves of the PPO
and SAC algorithms using the fixed and randomized training
regimen in the MiaInsoleOnConveyor environment with a
known object position and using a truncated history. It can
be observed that PPO is able to learn a successful grasping
behavior for a single fixed initial position. However, both PPO
and SAC are unable to learn generalizing grasping policies.

Table I shows the evaluation of generalization per training
procedure, algorithm, and state representation. It becomes
evident that including a truncated history of observations in the
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Fig. 2. Mean training return over five runs of SAC and PPO in MiaInsoleOn-
Conveyor. Shaded areas represent the standard error of five runs. The suffixes
-F and -R represent the fixed and randomized training regimen, respectively.

TABLE I
RESULTS. PERFORMANCE IS EVALUATED AFTER 10,000 EPISODES FOR

EACH COMBINATION OF ALGORITHM, STATE REPRESENTATION, AND
TRAINING REGIMEN.

Mean Success Rate
± Standard Error

Algorithm K-N K-H U-N U-H

PPO-F .464± .077 .488± .086 .410± .091 .432± .045
PPO-R .344± .086 .536± .064 .376± .131 .392± .077

TD3-F .456± .126 .296± .098 .264± .084 .296± .152
TD3-R - - - .368± .118

SAC-F .408± .170 .408± .141 .312± .135 .152± .095
SAC-R .216± .130 .690± .160 .264± .154 .520± .121
SAC-A .640± .137 .744± .037 .544± .158 .800± .041

Abbreviations: K-N – known position, no history; K-H – known position,
with history; U-N – unknown position, no history; U-H – unknown position,

with history.

state space leads to a better performance over observing the
current state only. For all state representations the best training
procedure is adversarial training with SAC. We evaluated the
adversarial training regimen exemplary using SAC. However,
this regimen may be applied to any value-function based RL
algorithm, e.g., TD3.

V. CONCLUSION AND FUTURE WORK

We present a benchmark for manipulation of 3D DOs using
robotic hands through RL. RL is suitable for these tasks as
it does not need a model of object deformations to generate
closed-loop grasping behavior after training in simulation. We
use the benchmark to evaluate SotA deep RL algorithms under
various training regimens and state representations. We found
that using adversarial training performs well over a range of
different problem definitions.

In the future, we intend to perform a more thorough
evaluation of SotA RL algorithms on this novel benchmark
including a detailed analysis of the impact of different state
and action representations. Furthermore, we plan to examine
the generalization capabilities of the tested algorithms not only
with respect to initial positions, but also to initial orientation
and grasp object parameters like friction, size, and stiffness.
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