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I. INTRODUCTION

Volumetric deformable objects, present in various forms,

are prevalent in many aspects of daily life, including food,

toys, or internal organs of humans. Successful manipulation

of such objects can lead to numerous practical applications

in areas such as surgical manipulation, or food processing

where robots can be used to make pizza dough [1], cut

fruits [2], [3], or in healthcare where robots can be used

to rearrange objects in target configurations [4], assistive

dressing [5]–[7], clean dishes [7]. These tasks are trivial for

humans because not only we possess remarkable dexterity

but we also excel at task planning, as demonstrated by our

ability to perceive objects at hand, and develop a plan to

complete the task with precision and accuracy in less than a

second.

Planning manipulation tasks involving interactions be-

tween deformable and rigid objects, such as wiping a curved

surface with a deformable tool, is difficult due to the chal-

lenge in predicting such interactions. Majority existing works

disregard the interaction between the deformable tool and

target objects, and focus only on the control aspect of the

tasks [8]. Only recently have some researchers started to

investigate how to estimate and harness such interactions

in different tasks such as assistive dressing [5]–[7], or food

processing [1]. In the literature, researchers studied the

interaction between complex deformable objects such as

human hands [9], [10] or cloth-like objects [5]–[7] and rigid

bodies by looking at the concept of contact reasoning where

the location of contact and the magnitude of applied forces

are estimated once the two bodies interact with each other.

However, this contact reasoning concept is more suitable

for the control aspect than for the planning aspect due to

its ability to track the interaction in real time. Thus, the

question of how to predict the interaction between volumetric

deformable tool and rigid objects and exploit such interac-

tions for planning remains open.

To address the aforementioned open issues, we propose

Sequence Planning with deformable-ON-rigid contact pre-

diction from GEometric features (SPONGE), a sequence
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Fig. 1: SPONGE deployed in the real world to accomplish a dish cleaning task with a

deformable sponge. Given a point cloud of the target objects, SPONGE powered by a

contact map prediction model trained in simulation, plans an optimal trajectory aiming

at achieving full area coverage of target objects with the least number of waypoints.

planning pipeline powered by a contact prediction model

that predicts contact between deformable and rigid bodies,

with the aim of providing robots with the aforementioned

human-like planning skill in order to efficiently automate

downstream deformable object manipulation tasks such as

cleaning dishes (Fig. 1). Instead of contact reasoning, in this

paper we tackle the concept of contact prediction of a 3D

deformable tool acting on rigid objects, which is better suited

for planning purposes. We take a data-driven approach with

physics-based simulation to model the interactions between

3D deformable objects and rigid objects. We then use Point-

Net [11] architecture to form a mapping from point-cloud

observation of the target object, and pose of the deformable

tool to 3D representation of the contact points between the

two bodies. The trained contact prediction model is then used

as the driving force behind the planning of a subsequent task.

Finally, we deploy SPONGE in the real world to demonstrate

that the contact prediction model trained only with synthetic

data from physics-based simulation can help to produce an

efficient plan for a manipulation task to be successfully

executed in the real world.

II. METHOD

The proposed planning pipeline shown in Fig. 2 consists

of two important steps: (i) learning to predict the contact

between the deformable tool and target objects, (ii) planning

an area-coverage trajectory on the target objects.

A. Contact Map Prediction Model

Knowledge of the contact area between two bodies is cru-

cial when it comes to planning manipulation tasks associated

with the interaction between two bodies [12]. Let us consider

Fig. 3, in which a human manipulates a deformable sponge

to clean rigid dishes. From the figure, we can see that the

contact areas between the sponge and the dishes are highly

dependent on the contact location and the geometric features
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Fig. 2: The proposed planning pipeline consists of: a contact map prediction module

learns from target object point clouds, which form the input to a dense point cloud

network to produce per-point contacts; a sequence planning module that harnesses the

trained prediction model to generate an optimal trajectory to accomplish the task.

at that contact location. For example, in the case of objects

with curved surfaces (Fig. 3 a,b,c), the deformability of the

sponge allows it to conform to the curved surface to cover

more area of the object. Let us examine Fig. 3 a, one can

wipe both the bottom and the wall of the pan simply by

pressing the sponge on the intersection line, which would not

be possible if the sponge was rigid. Inspired by this behavior,

we want to develop a model that learns a mapping from the

geometric features of the rigid objects to the contact areas

between the deformable and the rigid objects.

To this end, we propose using a dense point cloud network

to model the contact information between the deformable

tool and the target object. Specifically, we use a Pointnet

segmentation network [11], which, given an input point cloud

of the target object PO produces per-point outputs. It is worth

noting that the Pointnet segmentation network is not trained

to do segmentation, as the name implies, but to predict per-

point contact class, which indicates whether a point of the

target object is in contact with the deformable tool or not.

The input of the network includes the position and normal

vector of each point pi ∈ PO and a feature vector associated

with each point pi. Point positions are normalized to the

zero mean, enabling the model to be invariant for point-

cloud translations. The feature vector is a two-dimensional

vector [sin(θ), cos(θ)] representing the orientation of the

deformable tool around the Z axis at the contact location pc.

For points that are not the contact location, the feature vectors

are defined as [0,0]. The output of the contact prediction

model is the contact class of each point pi of the target

object, where 1 is in contact and 0 is not in contact with

the deformable tool. The proposed network is trained with

supervised learning manner on a synthetic dataset with the

Binary Classification Loss function. Readers are referred to

[13] for more details related to the synthetic training dataset.

B. Area Coverage Planning Under Deformations

We address the problem of area coverage planning under

deformations, where our goal is to plan an optimal trajectory

that covers the entire surface of the target objects using a

deformable tool while harnessing the learned contact map

a) b)

c) d)

Fig. 3: Different tactics of human to create contact with various complex surface

profiles using a deformable sponge.

prediction model. The proposed algorithm consists of two

steps: 1) sampling waypoints, where we solve the Set Cover

problem [14] to sample sets of waypoints that ensure 100%

of the deformable tool’s area coverage of the target objects,

2) sequence planning, where we choose and optimize the

optimal trajectory from the obtained sets of waypoints.

In the first step, the planning algorithm takes the point

cloud of the target object along with the number of sets to

be sampled and produces T containing nsets sets of contact

points on the surface of the target object. We achieve this

by solving the set cover problem using a heuristic bottom-

up sampling algorithm, where we first randomly sample a

contact point on the target object surface, predict the contact

areas at that point, and remove all the points that are in

contact from the target object point cloud. This process is

repeated until the remaining point cloud of the target object

is empty, indicating that we have covered the entire object.

Once T is obtained, we proceed to the sequence planning

step, where the goal is to produce an optimal trajectory that

achieves full area coverage of the target objects while min-

imizing a certain cost measure, such as the travel distance.

We frame this problem in relation to the well-known travel

salesman problem (TSP) [15]. We achieve this by solving

the TSP with the 2-Opt algorithm [16] for the best set of

waypoints Tj ∈ T , which ensures 100% of the area coverage

of the target objects with the least number of waypoints.

More formally, the optimal trajectory is defined as

Topt = TSP (argmin
Tj∈T

len(Tj)) (1)

III. EXPERIMENTS AND RESULTS

We evaluate each component of our SPONGE pipeline:

contact map prediction and sequence planning in both sim-

ulation and real world.

A. Contact Map Prediction Result

We access the performance of the proposed prediction

model based on the contact prediction F1 score on the

test dataset, which is approximately 0.95. This high score

indicates that the proposed model is capable of accurately

predicting the contact map, given only the applied position

and the rotation of the sponge. Fig. 4 qualitatively compares

the predicted contact map from the proposed model with

the ground truth in the simulation. As shown, the predicted
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Fig. 4: Visualization of the contact map predictions on the test dataset and the ground-

truth in simulation. Left columns show the ground-truth and the right columns show

the prediction. Blue indicates points that are in contact with the deformable tool, while

orange denotes points that are not in contact with the deformable tool.

TABLE I: The average area coverage (%) and average number of waypoints over 20

trajectories on the target objects in simulation. ↑: higher the better

Object ID Area Coverage Number of Waypoints

1 89.5 19.3
2 97.3 13.3
3 100 18.1
4 96.2 14.1
5 87.6 23.6
6 97.9 22.3
7 98.7 12.4
8 88.5 32.7
9 92.1 22.4
10 94.6 20.2

All ↑ 94.27

contact maps are qualitatively similar to ground truth. It

should be noted that the model was able to capture the

correlation between the geometric features of the target

object and the contact map between the two bodies. For

example, let us examine the bowls shown in Fig. 4, because

of the deformability of the tool, it conforms to the curvature

of the bowls when applied to the side of the bowl. Our

proposed model was able to capture this behavior by taking

into account the pose of deformable tool, and the local

features close to the applied location.

B. Planning in Simulation Result

We investigate the quality of the generated trajectories

in the context of the dish cleaning task in the Isaac Gym

simulator using the same environment. The position and con-

tact forces of the sponge are recorded during the execution

process. As the objective of the task is to cover the entire

surface of the target objects with the planned trajectory, we

quantify the quality of the trajectory by the area coverage

(i.e., proportion of the contact points to the total population

of point clouds). For each object, we randomly initialized its

starting position 20 times and evaluated the best trajectory.

In total, we evaluated 200 trajectories on all ten objects.

Table I presents the average area coverage over 20 op-

timal trajectories on all objects. As expected, the number

of waypoints needed to cover the entire surface increases

as the size of the target objects increases. These results

clearly show that the proposed planning pipeline is capable of

producing high-quality trajectories that cover approximately

94% the surfaces of different objects with varying geometry

and curvatures.

C. Real Robot Deployment

To investigate how well the proposed pipeline performs in

the real world, we conducted an experiment that performs a

dish cleaning task with a Franka Emika Panda equipped with

Final StateStart State Planning

by SPONGE

Fig. 5: Qualitative visualizations of SPONGE for real-world dish cleaning task.

Columns headed by Start State are the target object with blue marker writings denoting

dirt need to be removed. The optimal coverage trajectories planned by SPONGE (solid

green lines) are shown in columns headed by Planning by SPONGE. The columns

headed by Final State are when robot is done executing the early planned trajectories.

TABLE II: The average area coverage (%) and average number of waypoints over 5

trajectories on the target objects. ↑: higher the better

Object Area Coverage Number of Waypoints

Plate 94.5 20.4
Bowl 96.2 17.4

All ↑ 95.35

a hemispherical finger attached to a deformable sponge, as

shown in Fig. 1. The dimensions and material characteristics

of the sponge used in the real-world experiment are identical

to those of the sponge in the simulation. The goal is to clean

all the blue marker writings, which represent dirt on the top

surface of two target objects used in this experiment are a

bowl and a plate that are not from any dataset.

Fig. 5 shows qualitative results of the real robot deploy-

ment of SPONGE on the two target objects. We can see that

the robot has successfully accomplished the dish cleaning

task by removing almost all of the blue marker writings from

the surfaces of the target objects with less than 20 waypoints.

This observation was further reflected by the quantitative

results shown in Table II with an impressive area coverage

of more than 95% in two different geometries.

D. Discussion & Limitation

Several limitations of SPONGE can be addressed as fol-

low. First, the current contact map prediction model lacks

real-time knowledge of the en route contact map while

moving from one contact point to another. This additional

knowledge can potentially increase the efficiency of the

planning pipeline, so that fewer waypoints would be needed

to cover the entire surface of the objects.

Second, in the sequence planning module, since we just

randomly sample contact points until the entire surface is

covered, the resulting trajectories may look counter-intuitive

compared to smooth spiral-shaped trajectories of humans.

Finally, the planned trajectories are executed in an open-

loop manner, where we omit the actual contact happening

between the two objects during the manipulation. This infor-

mation is important in reacting and adapting trajectories to

uncertainties such as incorrect contact map prediction, or dis-

placement of the target object during execution procedure.
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