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Abstract— Many fabric handling and 2D deformable material
tasks in homes and industries require singulating layers of ma-
terial such as opening a bag or arranging garments for sewing.
In contrast to methods requiring specialized sensing or end
effectors, we use only visual observations with ordinary parallel
jaw grippers. We propose SLIP: Singulating Layers using In-
teractive Perception, and apply SLIP to the task of autonomous
bagging. We develop SLIP-Bagging, a bagging algorithm that
manipulates a plastic or fabric bag from an unstructured state
and uses SLIP to grasp the top layer of the bag to open it
for object insertion. In physical experiments, a YuMi robot
achieves a success rate of 67% to 81% across bags of a variety
of materials, shapes, and sizes, significantly improving in success
rate and generality over prior work. Experiments also suggest
that SLIP can be applied to tasks such as singulating layers of
folded cloth and garments. Supplementary material is available
at https://sites.google.com/view/slip-bagging/.

I. INTRODUCTION

Many tasks in homes and factories require grasping a
single layer of 2D deformable objects. Examples include
taking one napkin from a stack of napkins, grasping the
top layer of a folded towel to unfold it, grasping a single
layer of a T-shirt to insert into a hanger, and grasping a
single layer of a bag to hold it open while placing items
inside. Humans manipulate such deformable objects with
great dexterity using touch and vision. Such tasks are very
challenging for robots, as a 1 mm change in the gripper
height can lead to the difference between a missed (0-layer)
grasp, a 1-layer grasp, and a 2-layer grasp. On the other hand,
enabling touch sensing may require equipping the robot end
effector with compliant grippers or special tactile sensors.

In this work, we achieve single-layer grasping with a high
success rate using a bimanual robot with an ordinary parallel-
jaw gripper. We use self-supervised learning to identify
where to grasp, and we use interactive perception [1] to
determine the number of layers grasped. The robot iteratively
adjusts its grasp until it successfully grasps a single layer.

We propose SLIP: Singulating Layers using Interactive
Perception and apply SLIP to bags and fabrics. We use
the task of autonomous bagging as a motivating example—
opening a deformable bag from an unstructured initial state
and putting objects into it—and demonstrate in physical
experiments how SLIP can significantly improve the success
rate of robot bagging by 5× from prior work and is effective
across a variety of bag materials. Moreover, we conduct

1The AUTOLab at UC Berkeley (autolab.berkeley.edu).
2The Robotics Institute at Carnegie Mellon University.
3Toyota Research Institute, Los Altos, USA.
Correspondence to: yunliang.chen@berkeley.edu

Fig. 1: SLIP-Bagging. Top 2 rows: (1) Initial unstructured and
deformed bag. (2) The robot flattens the bag, and then (3) uses
SLIP to grasp the top layer of the bag, rotates it by 90◦, and inserts
objects. (4) The robot lifts the bag filled with the inserted items.
Bottom 2 rows: (A) Initial configuration of a piece of folded cloth.
(B) The robot uses SLIP to grasp the top layer of a folded square
cloth. (C) After grasping the top layer, the robot lifts the cloth up.
(D) After shaking, the cloth is successfully expanded.

physical experiments to evaluate the applicability of SLIP
to singulating layers for various fabrics and garments.

II. RELATED WORK

A. Deformable Bags and Single-Layer Grasping

There is a rich literature on deformable object manipula-
tion; see [2–4] for representative surveys. Among deformable
object manipulation, fabric manipulation is one of the most
widely-studied areas [5–14]. While some prior work has
studied singulating a single sheet or fabric layer from a
stack, most use tactile sensing or specialized end effectors.
Tirumala et al. [15] use a ReSkin sensor [16] and Man-
abe et al. [17] design a rolling hand mechanism to separate
a single sheet of fabrics. Guo et al. [18] use a XELA uSkin
tactile sensor combined with visual inputs to turn a single
book page. In this work, we propose to singulate layers
with standard end effectors purely from visual feedback.
Demura et al. [19] study grasping the top folded towel from
a stack using visual feedback with a scooping action, using
towels which are each several millimeters thick. In contrast,
we study tasks where layers can be thinner than 1 mm.

https://sites.google.com/view/slip-bagging/


Fig. 2: Left: Examples of SLIP in action. Each row shows an example of one cyclic, triangular trajectory T in an iteration where one
gripper moves the bag while the other one pins the bag. Top row: a third-person view of the robot. Next three rows: top-down RGB
camera views of one cyclic trajectory for different trials. They show, respectively, a 0-layer, 1-layer, and 2-layer grasp on a plastic bag.
We provide zoomed-in versions of images in the third column to see the layers in more detail. See Sec. III. Right: Top panel: Training
and test bags with various materials and shapes used in experiments (Tab. I). Bottom panel: Fabric and garments (Tab. II). See Sec. IV.

Autonomous bagging has wide applications in retail,
food handling, home cleaning, and packing. Much of the
prior work on physical experiments with deformable bags
assumes a semi-structured bag state [20–25]. Recently,
Chen et al. [26] propose the AutoBag algorithm for ma-
nipulating a thin plastic bag from an unstructured state.
However, AutoBag frequently fails when attempting to orient
the bag upward since it is not a stable pose for deformable
bags. In this work, we avoid orienting the bag upward.
Instead, we flatten the bag and singulate the top layer of
the bag to open it, which results in much higher success
rates. Moreover, while AutoBag is designed specifically for
opening thin plastic bags, we show evidence that SLIP-
Bagging is effective on other bag materials and shapes.

III. SLIP: SINGULATING LAYERS USING INTERACTIVE
PERCEPTION

In this section, we describe SLIP in the context of grasping
a single layer of a deformable bag, but the algorithm applies
to other fabric materials (see Sec. IV). SLIP is motivated by
how, after the robot performs a grasp, it cannot easily tell
how many layers it grasps from visual inputs of a static scene,
as the top layer occludes the layers underneath. However,
by moving the gripper and observing how the object’s top
surface is moving, the robot can infer how many layers it has
grasped. Formally, SLIP consists of 3 components: a cyclic
trajectory T of the gripper, a video classification model, and
an iterative height adjustment algorithm.

The trajectory T needs to satisfy two properties: (1) The
movement should reveal enough information for the robot
camera to infer how many layers are grasped, and (2) the
trajectory should be cyclic, so the bag roughly recovers its
original state after executing T , allowing the robot to retry
the grasp at the same location but with a different height.

For (1), we tilt the gripper at an angle θ = 50◦ so the grasp
point is visible in the camera. For (2), we use a triangular
trajectory, where the robot gripper first moves backward,
then upward, and finally forward and downward back to
the original position. To prevent the deformable object from
translating as a whole, we use the robot’s second gripper to
pin the other side. See Figure 2 for a visualization. In our
implementation, the trajectory takes about 5 secs.

While the robot executes the trajectory T , the camera takes
an RGB video stream of the bag. A video classification
model M takes the video and classifies the grasp into 3
categories: 0 layer, 1 layer, and 2 layers. We use a SlowFast
network [27], which takes in 32 images of size 224 ×
224 sampled with a uniform interval from the video stream.
Fig. 2 illustrates the visual differences among different layers
grasped on a plastic bag.

Given the model classification, SLIP adjusts the gripper
height and retries the grasp if it does not successfully grasp
a single layer. We choose to use a fixed height adjustment
each time similar to the strategy in [15], with height deltas
∆h− and ∆h+. One could also choose to let the adjustment
height decay over time or use the bisection method, but we
empirically find that a fixed height adjustment is more robust.

IV. SLIP-BAGGING AND PHYSICAL EXPERIMENTS

A. SLIP-Bagging

We present the SLIP-Bagging algorithm. It consists of 5
steps: (1) flatten the bag, (2) grasp the top layer of the bag
near the bag opening using SLIP, (3) rotate the bag sideways,
(4) use the other gripper to insert objects, and (5) lift the bag.
In the first step, the robot leverages parameterized primitives
such as Shake, Rotate, Dilate, and Fling actions, where the
grasp points are learned similar to Chen et al. [26]. Algorithm
and implementation can be found on the project website.
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Fig. 3: Distribution of the number of layers grasped for different grasp heights for 4 different bags.

Category Bag Open/Flatten Sing. Grasp Full Success % Objects Inserted

AB SB PD SB PD AB SB PD AB SB

Thin Train 3/6 6/6 1/6 6/6 1/6 1/6 5/6 17% 39% 94%
Plastic Test 3/6 6/6 1/6 6/6 1/6 1/6 4/6 17% 36% 75%

Thick Train 3/6 5/6 1/6 5/5∗ 1/6 1/6 3/6 17% 36% 56%
Plastic Test 2/6 5/6 0/6 4/5∗ 0/6 2/6 4/6 0% 33% 67%

Draw- Train 0/6 6/6 0/6 5/6 0/6 0/6 5/6 0% 0% 83%
string Test 0/6 6/6 1/6 5/6 0/6 0/6 4/6 0% 0% 67%

Reusable Train 0/6 5/6 0/6 3/5∗ 0/6 0/6 3/6 0% 0% 50%
Handbag Test 0/6 6/6 1/6 6/6 1/6 0/6 4/6 17% 0% 81%

TABLE I: Physical experiment results of SLIP-Bagging compared with baselines. 6
trials were run on each of the 8 bags (Fig. 2) for each method. Each trial attempts to
insert 6 rubber ducks, and “% Objects Inserted” is the average percentage of objects
inserted and contained after bag lifting. “Sing. Grasp” is the success rate of SLIP.
PD: Perceived-Depth baseline. AB: AutoBag. SB: SLIP-Bagging. ∗Denominator is
the number of successful flattened trials that proceed to the SLIP stage.

Objects 0-Shot Recall SLIP
Succ. Rate0-layer 1-layer 2-layer

Cloth 100% 100% 62% 4/6
Dress 100% 75% 75% 4/6
Hat 100% 83% 25% 5/6

TABLE II: Non-bag experiments. The middle 3
columns show the (multi-class) recall of the video
classification model trained on bags and tested on
garments without finetuning. The last column shows
the success rate of grasping a single layer using SLIP
with the classification model.

B. Bagging Experiments Setup
We use a bimanual ABB YuMi robot with an overhead

RealSense D435 camera. We evaluate SLIP-Bagging on
8 bags, shown in Figure 2. For each trial, we randomly
initialize the bag state by taking the bag, compressing and
deforming it with our hands, and the goal is to insert 6
rubber ducks. We compare SLIP-Bagging to 2 baselines: (1)
Perceived-Depth (PD), which ablates the SLIP algorithm in
SLIP-Bagging and grasps at the perceived depth of the grasp
point measured by the depth camera. (2) AutoBag (AB), as
proposed in [26]. For each bag, we conduct 6 trials.

C. Experiments Results
Figure 3 shows the distribution of the number of layers

grasped at various grasp heights (measured from the surface
height) for each of the 4 training bags in the training data.
As expected, as the grasp height decreases, it is less likely to
grasp 0 layers and more likely to grasp 2 layers. However,
there is no single grasp height that always works, as the
success depends highly on the bags’ specific configuration.

Results in Table I demonstrate that SLIP-Bagging achieves
a higher success rate than baselines. Perceived-Depth has a
low success rate of grasping a single layer. This is because,
for the mesh bag, the perceived depth is often too deep due
to holes, resulting in 2-layer grasps, while for other bags,
the perceived depth is often not deep enough and leads to 0-
layer grasps. AutoBag, designed for thin plastic bags, is not
effective on drawstring bags and fabric handbags. In contrast,
SLIP-Bagging is effective on various bag materials. Check
out the project website for videos and failure mode analysis.

D. Single-Layer Grasping on Fabrics
We test SLIP on other materials to evaluate its applica-

bility to general single-layer grasping tasks. We consider 3
deformable objects: a blue piece of cloth folded twice into
a square, a white dress, and a red hat (Fig. 2). The task
goal is to grasp their top layer only. We apply our video
classification model trained on bags to these objects without
any finetuning. Table II shows the results. In each case, the
model predicts accurately on a 0-layer grasp and 1-layer
grasp, but less accurately on a 2-layer grasp, for which there
are greater visual differences across objects. A failure mode
associated with grasping a folded cloth is that the cloth has
4 layers. Grasping 1, 2, and 3 layers look visually similar,
so the model would mistaken those 2- and 3-layer grasps
as a 1-layer grasp. While the model accuracy is lower than
that of bags the model is trained on, the SLIP success rate is
fairly high. The robot starts from a grasp height higher than
the surface height and gradually decreases its height, so it
suffices for the model to accurately recognize a 1-layer grasp.
We believe with some finetuning of the video classification
model to bridge the gap between the visuals of the fabrics
and bags, the success rate of SLIP can be further improved.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose SLIP: singulating layers using
interactive perception. Experiments show that SLIP is suc-
cessful on many materials and that SLIP-Bagging achieves
significantly higher success rates over baselines for au-
tonomous bagging. Future work can apply SLIP to related
tasks such as packing and wrapping.
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