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I. INTRODUCTION

The broad variety of fabric materials that are handled by
humans everyday presents several challenges when manip-
ulated by robotic systems. As an example, the variability
of cloth materials in house-hold objects in terms of shape,
stiffness, elasticity, and mass [1], requires humans to perform
a set of diverse manipulation actions such as those used for
dressing assistance [2] or flattening, folding and twisting
cloths [3]. However, it is not trivial to transfer such skills
to robot manipulators, as manipulation primitives are often
manually designed for a specific application [4], or a set of
pre-tuned primitives is used [5]. Thus, to cope with a wide
range of cloths, robotic systems should integrate learning
algorithms that autonomously decide the parameter values
of these manipulation primitives.

The manipulation primitives used in robotic cloth ma-
nipulation fall into two categories: quasi-static, such as the
pick-and-place primitive [6]; and dynamic, which involve the
forces of acceleration of the manipulator [7], such as the fling
primitive [4]. Quasi-static primitives have been extensively
used for cloth folding and unfolding [5], [6], [8]–[11], where
different algorithms have been proposed for deciding the end-
effector pick-and-place positions. However, parameters such
as the specific trajectory height or velocity of the primitive
have been neglected. This is crucial in applications such as
cloth manipulation in-contact with a surface, where the size
of the cloth will drastically affect the manipulation result,
e.g., bigger cloths will have more contact if they follow
a trajectory with lower height (see Fig 1). Hence, these
parameters should be taken into account to cope with a
diverse set of cloth materials and sizes.

In this abstract, we propose a method to learn a visual
policy that can determine the optimal parameters of manip-
ulation primitives for cloth manipulation. We refer to our
method as QDP, short for the Quasi-Dynamic Parameteris-
able manipulation method. Our key idea is to find the optimal
parameters by following a sequential decision approach. We
take inspiration from the Sequential RL (SRL) framework
[12] to sequentially assign an action space to each primitive
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Fig. 1: QDP sequentially optimises the manipulation primi-
tive parameter values to achieve better cloth configurations
(green) compared to using sub-optimal parameter values
(blue) for a manipulation primitive such as pick-and-place.

parameter. Here, each parameter of the primitive is informed
by the previous proposed parameter. This enables learning
the relationship between the primitive parameters and their
impact on the manipulation performance. Our method works
in a joint action space: the spatial action space of pick-
and-place locations; and the parameter action space, that
defines parameters such as the velocity of the manipulation
primitive. To evaluate the effectiveness of the sequential
decision of parameter values, we perform simulation and
real-world experiments in the task of unfolding a cloth
using a single robotic arm. The full paper [13], as well as
supplemental material can be found at the project website1.
Our contributions include:

• Introducing QDP, a novel approach that can optimise
the parameters of manipulation primitives, decoupling
the pick-and-place decisions as well as additional prim-
itive parameters, without supervision or hand-labeled
data during training,

• An analysis of the performance of QDP on the cloth
unfolding task, showing the superior performance of the
proposed method compared to baselines, as well as its
ability to find optimal parameters for both quasi-static
and dynamic manipulation primitives,

• For the first time, a real-world evaluation of different
manipulation primitives on a public cloth unfolding
benchmark [1].

1https://sites.google.com/view/qdp-srl

https://sites.google.com/view/qdp-srl
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Fig. 2: The proposed Quasi-Dynamic Parameterisable approach starts by getting a top-view image of the cloth. Then, to
find the optimal manipulation primitive parameters, a sequential action a is composed from the sub-action output of three
different networks: QDP pick-net, predicts the optimal pick position a∗pi; QDP place-net, predicts the place location a∗pl; and
QDP θ-net, predicts additional primitive parameters a∗θ , such as the primitive velocity. Each sub-action takes into account
the previous information via encodings, e.g. the place sub-action accounts for the pick location using a pick-centred image.
Finally, the manipulation primitive is executed with the optimal parameters placing the cloth on a new state.

II. SEQUENTIAL PARAMETER CHOICE VIA QDP

QDP learns a visual policy that can determine the optimal
parameters of a manipulation primitive for cloth manipula-
tion (see Figure 2). Given an initial top-view image, our
proposed approach determines the optimal pick, a∗pi ∈ A1;
place, a∗pl ∈ A2; and other parameters of the manipulation
primitive, a∗θ ∈ A3. These sub-actions are determined
sequentially following the SRL augmented state approach
[12], decomposing the action space A into N sequential sub-
actions A = A1 × · · · ×AN for computational feasibility.

The state is defined as a gray-scale image s ∈ RD×D,
where D is the height and width dimension of the image.
By decomposing the pick and place into multiple decisions
we can decide the place position based on the pick action.
Thus, the first decision in our sequential RL setting is the
pick position which is determined as

a∗pi = argmax
api

Q1(s,api), (1)

where the optimal pick a∗pi ∈ N2 is the pixel position in the
image space. The action-value function Q1 is approximated
by a neural network that also provides an encoding g(s) of
the state-space. Then, for deciding the place position we use
the augmented state S2 = S×A1. In order to encode the sub-
action api we use a mapping f : (s,api) 7→ Ipick that creates a
pick-centred image Ipick ∈ RE×E , which is a cropped image
centred in the pick position, similar to [12]. Instead of using
the state s as input to the action-value function Q2 we use
an encoding g(s), which is part of the output from the neural
network that approximates Q1. The place sub-action is then
computed as

a∗pl = argmax
apl

Q2(g(s), f(s,api),apl), (2)

where a∗pl ∈ N2, same as the pick sub-action.
Similarly, the last parameter sub-action augmented state

S3 = S × A1 × A2 re-uses information from both previous
sub-actions. Here, the action-value function Q2 is taken as
input to provide information of the place sub-action. In

addition, the third augmented state is given the encoding
g(s) as well as an encoding of the pick-centred image. The
parameter sub-action is thus computed as

a∗θ = argmax
aθ

Q3(g(s), f(s,api), Q2(s2,apl),aθ), (3)

where a∗θ ∈ N1, and the parameter values are defined in
a different range of values for each manipulation primitive
[13]. Finally, the action is composed by the three sub-actions
a =

[
a∗pi,a

∗
pl,a

∗
θ

]
that have been sequentially computed re-

using previous information throughout the augmented state
space. More details about the training proccedure and the
network structure are available in the full paper [13].

III. EXPERIMENTS

Our experiments evaluate the impact of learning to sequen-
tially optimise parameters such as the height or velocity of
pre-defined manipulation primitives in simulation and real-
world experiments. We evaluate two quasi-static manipula-
tion primitives: Pick-and-Place (P-n-P) and drag; and one
dynamic manipulation primitive. The performance of the
proposed QDP method is compared against the Max Value
Map (MVP) approach proposed by [4].

A. Optimal and Sub-Optimal Primitive Parameter Values

We start by analysing in simulation the effect of using
optimal and sub-optimal velocities and height values for the
manipulation primitives. The results, in Figure 3, show the
performance of QDP against MVP using as fixed parameter,
the median of the proposed values by QDP; as well as an
experimentally selected sub-optimal value. In Figure 3 a),
the dynamic manipulation primitive velocity has been set to
an optimal value of vmid = 0.1, and a sub-optimal value of
vmid = 0.2. The results show that using a sub-optimal value
for the dynamic manipulation primitive is detrimental, as the
performance drops more than 20% for both normal and large
cloths. We attribute this poor performance to constantly using
a high velocity, as opposed to adapting it, for cloth sizes
and configurations that do not require such acceleration to
improve their coverage.
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Fig. 3: Quantitative comparison of coverage percentage for unfolding cloth in simulation using the a) Pick-and-Place, and
b) Dynamic manipulation primitive. The results compare the proposed QDP (green) against MVP using different velocity
and height values. The additional parameter values are set as the median of the proposed values by QDP, denoted as MVP
optimal θ (blue), and a sub-optimal value (purple); for normal rectangular cloths, and large rectangular cloths.

The results in Figure 3 b) compare the P-n-P primitive
using an optimal height value of hθ = 0.2 and a suboptimal
value of hθ = 0.5. The suboptimal height value leads to
significant performance drops in both normal and large size
cloths. This is a result of lifting the cloth from a single
point and losing contact with the surface, which results in a
crumpled configuration when dropped onto its place location.

By using QDP to adapt the primitives the coverage perfor-
mance improves at least 10% for most of the cases. We note
that the P-n-P performance for large cloths slightly drops
compared to the optimal height, which can be a result of the
lack of large cloths in the training data set.

B. Real-World Experiments

We evaluate in the real-world three manipulation primi-
tives, transferring the networks in a zero-shot manner. The
performance is reported over 3 test episodes, with 10 episode
steps each, resulting in at least 30 interactions per cloth,
where we discard action steps in which the grasp was
unsuccessful and the cloth configuration was not altered by
the grasp attempt. Table I shows the results of the normalised
coverage improvement after 10 interactions with the cloth.
The results on the dynamic manipulation primitive show
that QDP can increase the coverage improvement up to
11.99% compared to MVP. In addition, the P-n-P primitive
where the optimal height is determined by QDP outperforms
all the other manipulation primitives, for both the towel
and napkin cloths, increasing the mean coverage more than
4.46% compared to MVP P-n-P, which is the second best
primitive. These results show that modifying the velocity and
height of the manipulation primitives based on the cloth state
is beneficial, following the results achieved in simulation.
In addition, the results for each primitive on the chequered
rag using QDP show superior performance compared to the
baseline. We hypothesise that the transitions of the rag when
performing the manipulation are closer to the training data,
and thus more in line with the simulation results.

TABLE I: Quantitative results of coverage improvement per-
centage after 10 interactions with the cloth in the real-world.
The results show the performance of QDP and MVP for the
the pick-and-place (P-n-P), drag and dynamic primitives.

Towel Napkin Chequered Rag

M
V

P

P-n-P 24.93 ± 8.64 17.69 ± 11.57 -0.30 ± 4.70

Drag -1.21 ± 6.34 3.72 ± 4.02 -6.41 ± 2.96

Dynamic 9.89 ± 1.16 1.57 ± 1.01 -6.04 ± 8.45

Q
D

P
(O

ur
s) P-n-P 29.39 ± 16.51 20.43 ± 11.13 -4.97 ± 3.69

Drag -4.58 ± 4.89 3.69 ± 8.56 -1.35 ± 4.22

Dynamic 9.88 ± 10.50 11.36 ± 4.23 11.99 ± 11.96

IV. CONCLUSION

We presented QDP, a novel approach for sequentially
choosing parameter values of manipulation primitives for
cloth manipulation. While prior work has overlooked the
effect of parameters such as the velocity or height of manip-
ulation primitives, the proposed sequential decision process
allows a greater variety and complexity of primitives to
be used. This variety makes it possible to handle diverse
fabric materials and sizes. Our experimental results show
that, compared to previous work, QDP can improve up
to a 20% coverage in simulation for the task of cloth
unfolding. Furthermore, real-world experiments demonstrate
the effectiveness of finding the optimal velocity and height
for dynamic and quasi-static manipulation primitives.

This work paves the way to a broader range of complex
manipulation primitives, eliminating the human effort of fine-
tuning or designing primitives, while reducing computational
requirements due to the sequential decision process. This
gives promise to exploring complex parameterised manip-
ulation skills for shaping other deformable materials such
as visco-elastic or elasto-plastic ones, which are present in
many industrial and house-hold environments.
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