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Abstract— Most robotic deformable object manipulation
strategies are based on the assumption that the environment
is structured (i.e., pre-grasping without any obstacles) and the
goal’s details have been fully specified (e.g., the exact target
shape). However, there are many tasks that involve spatial
relations in human environments where these conditions may
be hard to satisfy, e.g., bending and placing a cable inside
an unknown container. To develop advanced robotic manip-
ulation capabilities that avoid these assumptions, we propose
a contrastive learning-based planning and control framework.
Using simulation data collected by random actions, we learn
an embedding model in a contrastive manner that encodes
the spatio-temporal information from successful experiences,
which facilitates the subgoal planning through clustering in
the latent space. Based on the keypoint correspondence-based
action parameterization, we design a leader-follower control
scheme for the collaboration between dual arms. All models of
our policy are automatically trained in simulation and can be
directly transferred to real-world environments. To validate the
proposed framework, we conduct a detailed experimental study
on a complex scenario subject to environmental and reachability
constraints in both simulation and real environments.

I. INTRODUCTION

Deformable object manipulation (DOM) has many promis-
ing applications in growing fields, such as flexible cable
arrangement [1], [2], clothes manipulation [3], [4], robot-
assisted dressing [5], [6] and open bags [7]. Compared
with rigid objects, manipulating deformable objects is more
challenging due to their complex mechanical structure (i.e.,
variable morphology and the high number of degrees of
freedom) [8], [9].

Although great success has been achieved in DOM (e.g.
[10]–[16]), most of them assume a structured configuration
(pre-grasping without any obstacles) and a fully specified
goal (e.g. the exact target shape). However, these assump-
tions are hard to satisfy in some real-world scenarios. For
example, in the case where a robot is commanded to pick a
deformable cable from a cluttered environment and arrange
it inside a box; The relative spatial relationship “inside the
box” represents the desired goal rather than the specific target
shape of the cable [17], which we consider it as a symbolic
goal. In this paper, we provide a solution to this problem in
the context of automatically rearranging a deformable linear
object (DLO) in a planar setting to make it satisfy several
geometric constraints simultaneously. Specifically, our goal
is to enable dual arms to perform prehensile grasping about
the corresponding ends of a DLO, which is practical since it
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Fig. 1. Schematic diagram of our bimanual manipulation setting. (a)
Illustration of the context. The goal of the task is to enable dual arms to
grasp the corresponding ends of the DLO. (b) Graphical representation of the
problem formulation. The blue dashed lines represent the correspondence
between a robotic arm and a end of the DLO.

can be considered a prerequisite for DOM tasks with fixed
contacts [18]. There are several challenges in this setting:
(1) Lack of a goal specification; (2) Nonlinear dynamics of
the system in unstructured environments; (3) Long-horizon
planning complexity; (4) High-dimensional continuous state-
action spaces.

We present a novel contrastive learning-based planning
and control framework to deal with the challenges. As
opposed to modeling the complex dynamics of the DLO, our
method utilizes spatio-temporal information from previous
successful experiences, which enables to transfer of the
trained policy from simulation to the real world. Our original
contributions are:

• A contrastive learning-based subgoal planner for long-
horizon sparse reward tasks without a goal specification.

• A leader-follower control scheme for goal-conditioned
collaborative manipulation under geometric constraints.

• A detailed experimental study that evaluates the pro-
posed method in both simulation and real environments.

II. METHODS

A. Problem Formulation

We formulate the problem as a discrete-time episodic
Markov Decision Process (MDP) represented by a tuple
M = (S,A, R,P), where S is the state space, A is the
action space, R is the reward function, P(S[t+1]|S[t], A[t])
is the transition function. The objective of this context is to
reach the goal space SG, a subset of the state space SG ⊆ S
that satisfies geometric conditions. Thus, robots need to
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Fig. 2. Overview of the proposed planning and control framework.

Fig. 3. (a) Conceptual representation of our contrastive subgoal planning
model. (b) Visualization of the leader-follower control scheme.

perform correct actions continuously and finally complete the
task to obtain the sparse positive reward. A typical example is
shown in Fig. 1, in which dual arms {ar}2r=1 can not grasp
the corresponding ends {lr}2r=1 of the DLO L[t] initially
(g(lr|ar) denotes the relationship between the end and the
individual arm). Our goal is to change the state of the DLO
through H steps of manipulation, reaching the goal space
S[H+1] ∈ SG. Specifically, it means the geometric conditions
(robotic reachability and collision avoidance) are satisfied (a
real scenario shown in Fig. 1(a)).

B. Solution

Due to sampling inefficiency in this long-horizon sparse
reward task, we factorize the policy π(A[t]|S[t],SG) into
global subgoal planning πP (S

∗|S[t],SG) and local goal-
conditioned control πC(A

[t]|S[t], S∗), as shown in Fig. 2.
We describe a DLO with a link-joint structure and des-

ignate the joints as representative sequential keypoints [19],
denoted as Q[t] = {q[t]k }Mk=1. In addition, the coordinates of
the obstacles are also included in the state representations
S[t]. The action sequence of an arm T [t]

r = {Ppick, Pplace}
is defined as correspondence-based manipulation from the
present state S[t] to the intended state S∗. The picking
and placement locations are specifically chosen inside the
keypoints of the present state Ppick ← q

[t]
k ∈ Q[t] and the

intended state Pplace ← q∗k ∈ Q∗, respectively.
The dataset for training the data-driven model is collected

in simulation. Since our pick-and-place sequence T [t]
r =

(Ppick, Pplace) is determined based on the current state S[t]

and a desired goal S∗, we firstly record G states within the
goal space SG to form a dataset {S∗

g ∈ SG}Gg=1 through
manipulating the DLO with arbitrary actions and then imple-
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Fig. 4. (a) A snapshot of the simulation in Pybullet. (b) Experimental setup
on a planar workspace.

ment the correspondence-based action randomly. The proce-
dures include choosing a goal S∗

g within the dataset {S∗
g}Gg=1

and sample feasible actions from the parameterization space
to execute. Finally, we obtain a dataset D automatically with
D successful episodes D = {τj}Dj=1, where an episode is
τj = {[S[1]

j , A
[1]
j , S

[2]
j , · · · , A[H]

j , S
[H+1]
j ]}.

The aim of the subgoal planner πP (S
∗|S[t],SG) is to point

out a promising direction toward the goal space SG for the
query state S[t]. We consider the subgoal planning problem
as searching for a suitable state from previous exploration
S ∈ D. The motivation of our search-based subgoal planner
is the ultimate accomplished state S

[H+1]
j ∈ SG of a

successful episode τj is a desirable and feasible goal for
the states within this episode {S[t]

j }Ht=1 ∈ τj . The concept
of the training and prediction of the contrastive learning-
based subgoal planner is illustrated in Fig. 3(a). For a state
in the dataset S[t]

j ∈ {{S
[t]
j }

H+1
t=1 }Dj=1, its positive samples are

other states belong to the same episode {{S[t]
j }

H+1
t=1 \S

[t]
j } ∈

τj while its negative samples are other states belong to
different episodes in the dataset D \ {S[t]

j }
H+1
t=1 . With these

pairs, we leverage InfoNCE loss [20] to train the encoder
fE(Z

[t]|S[t]). Within the embedding space, this results in
the states belong to the same episode being placed together
but the negative samples pushed further apart.

The local controller πC(A
[t]|S[t], S∗) is responsible for

refining the configuration of the DLO S[t] based on the
subgoal S∗ supplied by the planner model πP (S

∗|S[t],SG).
We decouple the roles of twin arms as a leader and a
follower [21]. Both the leader and the follower determine
the pick-and-place sequence according to the correspondence
of keypoints between q

[t]
k ∈ S[t] and q∗k ∈ S∗, as shown

in Fig. 3(b). Without fixed contacts, dual arms adjust their
picking points at each time step and their individual roles
can be switched. Both pick-and-place sequences of them are
acquired through optimization subject to constraints.

The complete policy implementation process incorporates
global subgoal planning and local goal-conditioned control
and iterates until the task is completed.

III. RESULTS

The simulations in Pybullet [22] for collecting data and
validating the algorithm are visualized in Fig. 4(a), in which
a DLO and multiple cans serving as obstacles are included
in the workspace. The manipulation with our leader-follower
control scheme is rendered as a virtual force, which is



Fig. 5. A complete episode in simulation. The subgoal planner finds
the most similar state in the dataset (red column) concerning the current
state (blue column) and assigns the corresponding achieved goal of the
corresponding episode as a subgoal (green column). Then, the controller
determines the action conditioning on the current state and the subgoal.

parameterized by its position and magnitude and maintained
until the intended displacement distance is reached.

A complete episode of our constrained bimanual manipu-
lation in simulation is shown in Fig. 5. We retrieve the em-
bedding Z [t] of the state S[t] with the encoder fE(Z [t]|S[t])

and then locate the most comparable embedding S
[T ]
J in the

dataset D. Then, we assign the achieved goal S[H+1]
J of the

J − th episode in the dataset as a subgoal S[H+1]
J → S∗. At

last, the local goal-conditioned controller πC(A
[t]|S[t], S∗)

takes the current state S[t] and the planned subgoal S∗

as input and output the correspondence-based action A[t].
The entire planning and control framework iterates until the
attached state belong to the goal space S[t+1] ∈ SG.

Next, we show how well our suggested framework works
to transfer from simulation to reality without any fine-tuning.
The direct transfer is feasible since we do not require the
accurate dynamic consistency between them. We contend
that it is advantageous to interleave planning and control
for these complicated manipulation tasks. Fig. 4(b) shows
our physical robotic environments. Two ur3 manipulators
equipped with 2-fingered Robotiq grippers are used for this
constrained bimanual manipulation task. The obstacles in the
environment are localized with markers and fixed during
an episode. An Intel Realsense L515 camera is attached
to sense the top-down perspective of the environment I [t].
To analyze our framework in detail, we provide two typical
examples in the trials, visualized in Fig. 6. Fig. 6(a) shows an
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Fig. 6. Pictures of two typical examples in physical robot demonstrations.
The black box highlights the manipulated region during action execution.

episode with a constant subgoal that is presented throughout
the whole episode. The local goal-conditioned controller
initially arranges the DLO to the center of the workspace,
allowing dual arms to engage in the subsequent manipulation.
The DLO is then adjusted with dual arms, namely rotating
it around the obstacle. In order to bypass environmental
restrictions, robots finally shift the DLO further from the
obstruction. We acknowledge that the state after action im-
plementation and the planned subgoal vary in certain ways.
Actually, rather than requesting the controller to explicitly
attain a particular state, the planner is used to indicate a
promising way to approach the goal space. Owing to the
replanning operation, the desired subgoal probably varies
throughout the episode, as shown in Fig. 6(b). In the begin-
ning, the controller attempts to maneuver the DLO through
the barriers by moving it to the right of the workspace. A
new subgoal S∗ is included to promote shifting the right
end of the DLO to the upper right corner as the state of the
DLO changes. Then, both arms participate in distributing
the DLO horizontally in the workspace based on a new
subgoal S∗. This example illustrates that replanning is useful
to adjust the approaching direction in the tasks without goal
specifications.

IV. CONCLUSION

In this paper, we propose a novel contrastive learning-
based planning and control framework for the manipulation
of a DLO under environmental and reachability constraints.
Removing the assumption of a structured world and a goal
specification, our proposed methodology further enhances the
dexterity of robotic manipulation. To deal with the sparse
reward settings in long-horizon tasks, our policy model
is factorized into global subgoal planning and local goal-
conditioned control. All the models are trained in simulation
and can be transferred to real environments without any fine-
tuning. A detailed experimental study is reported to illustrate
the effectiveness of the framework.
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