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Abstract— In this work we present a framework for learning
graph dynamics of deformable objects that generalizes to
unknown physical properties. Our key insight is to extract
a latent representation of elastic physical properties of cloth-
like deformable objects from observations recorded from a
pulling interaction. EDO-Net (Elastic Deformable Object - Net),
jointly learns an adaptation module, and a forward-dynamics
module. The former is responsible for extracting the latent
representation of the physical properties of the object, while
the latter leverages the latent representation to predict future
states of cloth-like objects represented as graphs. We show both
in simulation and in the real world that our proposed method
generalizes its dynamics predictions to unknown physical prop-
erties of deformable objects.

I. INTRODUCTION AND RELATED WORK

Manipulation of deformable objects is a fundamental skill

towards folding clothes, assistive dressing, wrapping or pack-

aging [1], [2], [3]. In these scenarios, deformables are subject

to variations of physical properties such as mass, friction,

density, or elasticity, that influence the dynamics of the

manipulation [4], [5]. The complexity of the problem arises

from the following two factors characterizing deformable

objects [6]: i) their state is high dimensional and difficult to

represent canonically; ii) their interaction dynamics are often

non-linear and influenced by physical properties usually not

known a priori.

To address i), analytical models often employ particle-

based representations such as graphs extracted from point

clouds [7], [8]. These representations, combined with current

advancements in Graph Neural Network (GNN), have shown

promising results in learning complex physical systems [9],

[10], [11]. However, current methods assume that the physi-

cal properties are known a priori, which may not hold when

robots operate in human environments. Thus, addressing

problem ii) is of fundamental importance. The field of intu-

itive physics [12] tackles this challenge by learning predictive

models which distill knowledge about the physical properties

from past experience and interaction observations [13]. Intu-

itive physics mainly focused on rigid objects, but new data-

driven techniques suggest that interactions with deformable

objects (e.g. whipping or pulling) might be relevant for

learning their intuitive physics model [6], [14].
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Fig. 1: A pulling interaction is leveraged by EDO-Net to

explore the elastic properties of the object, which improves

the performance in subsequent tasks such as partial bandage.

In this work, we study the problem of learning graph

dynamics of deformable objects that generalize to objects

with unknown physical properties. In particular, we focus

on elastic properties of cloth-like deformable objects, such as

textiles, that we explore through a pulling interaction (Fig. 1).

We propose EDO-Net (Elastic Deformable Object - Net), a

model trained on a large variety of samples with different

elastic properties, without relying on ground-truth labels

of these properties. EDO-Net jointly learns an adaptation

module, responsible for extracting a latent representation

of the physical properties of the object, and a forward-

dynamics module, that leverages the latent representation

to predict future states, represented as graphs. We evaluate

our approach both in simulation and in the real world,

showing how EDO-Net accurately predicts the future states

of a deformable object with unseen physical properties. In

summary, our contributions are:

• EDO-Net, a model to learn graph dynamics of cloth-

like deformable objects and a latent representation of

their physical properties without explicit supervision;

• a procedure to train EDO-Net on a large variety of

samples with different elastic properties, enabling gen-

eralization to objects with unknown physical properties;

II. PROBLEM FORMULATION

In our formulation, we refer to the object’s elastic prop-

erties as Ti ∼ T , where T is the distribution of all possible

physical properties. We explore Ti by collecting a sequence

of observations Oi through an Exploratory Action (EA) [4],

[5]. An adaptation module is responsible for extracting a

latent representation zi of the physical properties Ti from

the observations Oi, which can be subsequently leveraged

by a forward dynamics module to generalize its predictions

across different Ti ∼ T . We define the state of a deformable

object with physical properties Ti as a graph Gi = (V i, Ei)
with nodes v ∈ V i and edges e ∈ Ei. The features of the



Fig. 2: Scheme of the overall model. Given a deformable object Ti with unknown physical properties, the adaptation module

fφ updates the initialization z0 of the latent representation of the physical properties Ti from sequences of observations

Oi
t|t=1,...,T processed by an attention layer and a RNN. In a second phase, the forward dynamics module gθ, implemented

as a GNN, uses zi obtained from the adaptation module to predict future states Ĝt of the deformable object.

node v describe the 3D Cartesian position of the nodes, while

the features of the edge e characterize the elastic relationship

among nodes. Given these, the aim of EDO-Net is to learn

a graph dynamics model of cloth-like deformable objects

gθ, wherein instead of predicting the next state, the focus

is on learning the delta displacement of the cloth δĜi
t. In

particular, the input of the dynamics model consists on a

latent representation zi of the underlying physical properties

Ti, the current state Gi
t and the robot control action at:

δĜi
t = gθ(G

i
t, at, zi). (1)

The latent representation zi can be obtained through a

learned function fφ that takes as input a sequence of ob-

servations Oi and an initialization z0 of the representation:

zi = fφ(O
i, z0), (2)

where the initialization z0 is learned together with the

model’s parameters θ and φ. In what follows, we will

describe in detail the method to implement and train the

graph dynamics gθ and adaptation fφ functions, respectively.

III. METHOD

An overview of the proposed EDO-Net is shown in Fig. 2.

In particular, for each deformable object with unknown

physical properties Ti, the robot has to adapt the initialization

z0 by using a sequence of exploratory observations Oi =
Oi

t |t=1,...,T where each Oi
t = (GOi

t , FOi

t ) consists of the

object state GOi

t , extracted from point clouds as done in [15],

and the force FOi

t , recorded from the robot sensors at time

t. From Oi, the adaptation module fφ first extracts a latent

representation zi of the physical properties Ti. The imple-

mentation of the adaptation function fφ is the following: for

each observation Oi
t, we encode (GOi

t , FOi

t ) into a latent

embedding oit through a Multi-Layer Perceptron (MLP). We

subsequently obtain an estimate ẑti ∈ R
p of zi from oit by

learning a node’s aggregation function through an attention

layer. The extracted representation zi is subsequently used

in the forward dynamics module gθ to obtain accurate

predictions of the future states of Ti conditioned on different

interactions at. We model the forward graph dynamics gθ
with a GNN conditioned on the latent representation zi of the

physical properties Ti, where zi is integrated as features of

the edges of the input graph as shown in the input processing

block in Fig. 2. We train the model gθ to predict state

differences δGi
t, receiving as input the control action of the

robotic manipulator at, the initial state of the object Gi
t and

the latent representation zi. We focus on the scenario where

the physical properties Ti are not directly observable from

the initial state of the object.

Training Loss: The overall model can be learned using a

dataset of exploratory observations DO = {DOi

}Ti∼T and

a dataset of interactions D = {Di}Ti∼T . The parameters φ,

θ and the initialization z0 can be optimized using a loss on

the prediction of the state difference δĜi
t obtained from gθ

for each training sample with physical properties Ti ∼ T .

The loss function L can be defined as follows:

L = E Ti∼T

Gi

t
,at,δG

i

t
∼Di

[

d(δGi
t, gθ(G

i
t, at, zi))

]

, (3)

where zi = fφ(O
i, z0) with Oi ∼ DOi

, and d is the

Mean-Squared Error (MSE) between the ground truth state

displacement of the deformable object and the model’s

prediction. Equation 3 optimizes the parameters θ to learn

a forward dynamic model conditioned on different repre-

sentations zi of physical properties Ti, implicitly driving

the parameters φ to learn to encode zi of different samples

without supervision from ground truth labels of the physical

parameters. Moreover, training across multiple Ti ∼ T
enforces the model to learn how to generalize to deformable

objects with unknown physical properties.

IV. EXPERIMENTS

In this section we evaluate the performance of EDO-Net,

regarding its capabilities to generalise dynamic predictions

to deformable objects with different elastic properties. To

this aim,we analyze EDO-Net dynamics predictions both in

simulation and real-world environments, testing the model

over a set of deformable objects with unseen elastic physical

properties Ti ∼ T .

Experimental Setup: we carry out the experiments in

the real world in the Partial Bandage environment shown

in Fig. 1, where the robot in the initial phase performs the



Fig. 3: Qualitative evaluation of the graph dynamics predic-

tions Ĝt obtained by EDO-Net and the NC baseline starting

from the inital graph G0. For each environment we select two

elastic samples with different physical properties T1, T2.

pulling EA, while in the second phase it pulls the cloth

downward over a human arm where the action at ∈ [0, Fmax]
specifies the perceived force at the end-effector that the robot

needs to achieve while bandaging the arm. We collect the

real-world pulling Exploratory Action (EA) and the interac-

tion trajectories on 40 textile samples with different elastic

properties where the dataset characteristics correspond to the

one in prior work [16]. For the simulation experiments we

use Pybullet [17], [18], in which we replicate the real-world

set-up creating two free-floating Franka-Emika Panda end-

effectors equipped with Force/Torque sensors and varying

the stiffness and the bending parameters of the simulator. We

separately train the models for the simulation and real-world

scenarios, leaving sim-to-real evaluation for future work.

Baselines: We compare EDO-Net with a Non-Conditioned

(NC) baseline model, which trains the forward model gθ
without conditioning on zi. We also consider an ablation of

EDO-Net trained on a single exploratory observation, rather

than a sequence of interactions, which we denote by EDO1.

Moreover, we include two oracle models in simulation to

set an upper-bound performance for the tasks: one Oracle

Forward model conditioned on the ground-truth simulation

parameters (OF), and an Oracle Supervised forward model

(OS), trained with an additional supervised loss term over

zi, to directly predict the ground-truth simulation parameters

during the training procedure.

A. Generalization to Unseen Physical Properties

In this section, we evaluate the generalisation capabilities

of EDO-Net. We consider both simulation and real-world

environments, and we perform quantitative and qualitative

tests of the model over a set of deformable objects with

elastic physical properties Ti ∼ T unseen during training. We

evaluated the model’s performance by computing the MSE

of the model’s predictions with respect to the ground truth

for each testing sample. We compare the performance of our

model with respect to the NC and the EDO1 baselines. In

simulation we also compare to OS and OF. In Table I we

report the mean and standard deviation of the MSEs evalu-

ated across all the testing samples with physical properties

Ti ∼ T . In all scenarios, EDO-Net outperforms the baseline

models both in terms of the average error and the standard

deviation across samples with different elastic properties.

The high standard deviation of the NC model is due to the

large difference between the average elastic behavior and the

extreme (rigid/elastic) ones. Moreover, EDO-Net achieves

comparable performances with respect to OF. Qualitative

visualizations of the relevance of our proposed method are

shown in Fig. 3. We can observe how the NC baseline

does not distinguish among samples with different physical

properties (T1 and T2), hindering its capability of predicting

the outcome of the robot control actions. On the other hand,

EDO-Net successfully leverages the latent representations (z1
and z2) provided by the adaptation module fφ.

TABLE I: Generalisation results of EDO-Net and the base-

lines in the simulated and real-world environments (in nor-

malized units), with T=5. Lower is better.

Model MSE (×10
−3) MSE (×10

−3)
Partial Bandage Partial Bandage

simulation real world

NC 29.60± 65.29 59.37± 57.50

EDO1 0.260± 0.197 3.046± 1.603

EDO-Net 0.151± 0.125 1.481± 0.500

OS 0.992± 1.480 −

OF 0.122± 0.194 −

V. DISCUSSION AND CONCLUSIONS

We presented EDO-Net, a data-driven model that learns

a latent representation of physical properties of cloth-like

deformable objects to generalize graph-dynamic predictions

to objects with unseen physical properties. We assessed

both in simulation and real world how conditioning the

forward dynamics model to the latent representation zi
helps in generalizing over unseen physical properties. It can

be shown that it is possible to decode the ground truth

physical properties Ti of the deformable object from the

latent representation zi with a weak learner, suggesting that

the loss in Eq. 3 implicitly trains the model to learn a latent

representation of the physical properties without explicit

supervision from the ground truth labels [15]. Moreover,

the latent representation zi can be transferred to different

environments where elasticity matters (e.g. lifting an elastic

bag), or to different downstream tasks such as learning an

inverse model to predict the control action between two

states [15].

A substantial part of the research in manipulating cloth-

like deformable objects focuses on robotic tasks like cloth

folding [19], [1], [20], cloth smoothing [21], [8], [22], as-

sisted dressing [2], [23], [24], and bedding manipulation [25],

[26]. These tasks require considering physical properties

such as elasticity, stiffness, and mass, as they significantly

impact the robot’s manipulation strategy. However, existing

methods fail to account for variations in these properties.

By leveraging the latent representation of EDO-Net, these

methods could adapt their manipulation strategies to different

elastic properties, enhancing generalization and performance.

Exploring this direction is part of our future work.
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