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Abstract— Studying the manipulation of deformable linear
objects has significant practical applications in industry. In
this paper, we propose a new framework to control and
maintain the shape of deformable linear objects with two robot
manipulators utilizing environmental contacts. The framework
is composed of a shape planning algorithm which automatically
generates appropriate positions to place fixtures, and an object-
centered skill engine which includes task and motion planning
to control the motion and force of both robots based on the
object status. The status of the deformable linear object is
estimated online utilizing visual as well as force information.
The framework manages to handle a cable routing task in
real-world experiments using two Panda robots and especially
achieves contact-aware and flexible clip fixing with challenging
fixtures.

I. INTRODUCTION
The manipulation of deformable linear objects (DLOs)

is a common and yet critical step in various industrial
manufacturing processes. One typical example could be the
wire harness assembly, where cables need to be installed on a
board or panel [1]. Due to challenges in accurate modeling,
real-time state estimation and multi-robot manipulation of
the DLO [2], the handling of such deformable cables still
heavily relies on manual labor. Researchers have proposed
various frameworks based on different solutions to each
sub-problem. Early works focused on achieving a desired
manipulation solely with robot contacts [3]–[5]. Following
the pioneering work by Zhu et al. [6], more recent studies
have focused on achieving complex shapes of DLOs using
environmental contacts, including fixtures and clips [7]–
[10]. However, previous works employed circular fixtures or
loosely fitted channel fixtures (as shown in Fig. 1(b) and
(c)), which results in minimal contact forces and is unable
to maintain the shape of the DLO. Additionally, most of the
works consider only visual perception and robot motion plan-
ning [7]–[9], even though the task includes abundant force
information. Moreover, it’s important to mention that all of
these works began by placing the fixtures in predetermined
or random positions, without addressing the issue of finding
appropriate fixture positions based on a desired shape.

In this paper, we propose a new framework to manipulate a
DLO, which addresses the limitations of prior work by gener-
ating fixture positions automatically from the desired shape,
leveraging clip-like fixtures (see Fig. 1(d)), and integrating
force sensing for manipulation. Real-world experiments have
validated the effectiveness of our framework in shape control
of DLO and demonstrated its advantage over traditional
motion planning for achieving a flexible clip fixing process.
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Fig. 1: (a) Setup of real-world experiment. The clip fixture ψ is
effective in maintaining the shape of the cable, but also poses a
challenge in terms of handling. (b) Circular fixture. (c) Channel
fixture. (d) Clip fixtures.

II. PROBLEM FORMULATION AND METHOD OVERVIEW

The proposed framework consists of two primary compo-
nents, as illustrated in Fig. 2: the fixture placing algorithm (in
orange box) and a skill engine for task and motion planning
(in blue box).

Taking the desired shape S∗ as input, the fixture placing
algorithm generates appropriate fixture positions. Fixtures
placed on generated positions should help the DLO to
maintain its shape. The task and motion planning system
then controls the motion and force of both robots based on
an online estimation of the DLO status, which is defined as
a 4-tuple (St ,xh,T ,C).

• Real-time shape St . This is obtained from raw images
captured by visual sensors, and can be represented as a
sequence of vertices V = {vi}, i ∈ {1,2, ...N} and edges
E = {ei}, i ∈ {1,2, ...N −1}. S∗ can be represented in a
similar way as (V ∗,E∗).

• Position xh. This is defined as the position of the DLO
“head”, i.e., the end that is grasped by the robot.

• Tensity T ∈{0,1}. Tensity is tracked using force sensors
as an indicator of deformation resistance. We define T =
1 if the component of external force fext along DLO is
above a certain threshold.

• Contact C ∈ {0,1}. This state is obtained from force
sensor to indicate DLO’s contacts with the environment.
Only when the DLO stays taut (T=1) are detected
contacts with the environment reliable.

Based on the observed DLO status, our skill engine selects
one from the two designed skill, namely, the shape tracking
skill and the clip fixing skill. The shape tracking skill uses
the visual information and generates joint trajectories for
both robots, enabling them to track the desired shape S∗ and
to move to each fixture. The clip fixing skill uses T and
C and applies force that changes in multiple stages, firstly
stretching and then pushing the DLO into the fixture. These
two skills are applied in a repetitive manner, until all the
intended contacts have been established.
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Fig. 2: Framework Overview. The framework takes a shape (marked in green) as input, and the fixture placing algorithm (in the dashed
orange box) generates appropriate positions to place clips. Based on information from the camera and force-torque sensors, the skill
engine for task and motion planning (in the dashed blue box) then executes either the shape tracking skill (top) or the clip fixing skill
(bottom) to establish contacts between the DLO and each fixture, and finally achieves the desired shape.

III. FIXTURE PLANNING

Assuming that S∗ lies on a plane M without any en-
tanglements, the fixture placing algorithm generates a set
of fixture positions Ψ = {ψi},ψi ∈ R2 on M. Without loss
of generality, we assume the DLO segments between each
consecutive fixture pair are approximately straight (red line
segments in Fig. 2). Under such an assumption, fixtures
should be placed at where the desired shape “bends” the
most. Therefore, we generate fixture position based on the
radius of curvature (ROC) ri of each vertex in V ∗. The first
set of fixtures are generated at the local maximums and
minimums of the spline r(v) of ri, splitting S∗ into a set of
curve segments S∗ = {s∗i ,Ψ}, i ∈ {1,2, ...,L}. In each curve
segments si, additional fixtures are generated progressively
to further reduce the error Js between the resulting shape
S = {si,Ψ} and S∗:

Js = ∑
L

∫ li

0
||s∗i − si||. (1)

This step is repeated until Js is below a certain threshold J∗s .
All the generated fixture positions ψi are examined under

the global constraint of distance between two neighboring
fixtures d(ψi,ψ j). The generated positions are considered
valid only if the distance lies in a space C(d), which is
defined by robot gripper size lg as the lower limit and by
maximum allowable sag between consecutive fixtures Jd as
the upper limit:

C(d) = {d ∈ R+| d > lg, fdeform(κ ,d)< Jd}, (2)

where fdeform(κ ,d) is the sag of the DLO with stiffness κ

between fixtures at a certain distance d to each other.

IV. DLO MANIPULATION

Inspired by the repetitive pattern in the manual cable
routing process, we design two manipulation skills as well
as an object-centered high-level skill engine to handle this
routine.

A. Shape Tracking Skill
For each generated ψi, the shape tracking skill controls

the motion of both robots to reach a desired pose pair

(pi
1,pi

2), facilitating the upcoming clip fixing skill. Each
pose is defined as pi = ((x′,z′d),w

′)T , where x′ ∈ R2 is the
projection of a desired end-effector position x ∈ R3 onto M
and w′ represents the orientation. The distance between M
and robots, denoted as z′d , remains constant and obstacle-
free throughout the movement, but decreases to zero once
the robots approach a fixture. Therefore, we consider only
the planning of x′ and w′ in the shape tracking.

The two robots collaborate in a “master-slave” manner. For
the robot leader, the desired position x′1 is selected from V ∗

under a distance constraint to ψi. For the robot follower, the
skill aligns its end-effector with that of the leader and grasps
the DLO at the fixture. To select a proper grasping position
x′2, the online shape of DLO St is tracked by a data-driven
method FASTDLO [11].

Collision avoidance with the leader and the fixtures are
also considered in the motion planning of the robot follower.
This can be formulated as an optimization problem that
following the selection of x′2, the optimal orientation w∗

2
should keep the robot follower at the maximum distance to
the robot leader and two neighboring fixtures:

w∗
2 = argmax

w′
2

∑pk∈{p1,ψ1,ψ2}
∥p2 −pk∥. (3)

As p∗
2 is selected for the end-effector, we plan the motion

of the robot follower in joint space with RRT* algorithm
to avoid possible collision between two robot arms in the
process of motion.

B. Clip Fixing Skill

The clip fixing skill controls both robots to apply forces
on the grasped segment of DLO to push it into the clip. We
formulate the fixing skill using an adaptive force impedance
controller [12] [13]. The clip fixing skill is defined as a
directed transition graph of manipulation primitives (MPs).
A single MP consists of a desired linear velocity ẋd ∈ R3

and feedforward force fd ∈ R3. All the transitions between
MPs are triggered by changes in T and C status to achieve
an adaptive and contact-aware fixing process. Once the DLO
is fitted into the clip, it realizes the success and the stops the
robots from applying forces or moving further.
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Fig. 3: Fixture positions generated by the placing algorithm on a
desired shape and corresponding ROCs.

Pre-contact stretching To measure the contact force
with environmental fixtures accurately, the object is firstly
stretched by both robots in x′ axis to be taut:

ẋd
1 = [0, 0, 0]T , fd

1 = [ fs, 0, 0]T , (4)

where fs is the desired magnitude of stretching force. The
robot follower in this MP will move and apply forces in an
opposite direction to the leader.

Contact establishment The taut DLO is then moved in
the opposite of the clip opening direction u:

ẋd
1 =−u, fd

1 = [ fs, 0, 0]T , (5)

until it has contact with the fixture. C is updated by detecting
the rise of external force projected in the moving direction
f ext
u . The position of the contact point is memorized as xc.

The robot follower takes the same motion and forces as the
robot leader.

Push in Once the contact happens, the DLO is pushed
into the clip:

ẋd
1 = [0, 0, 0]T , fd

1 = [ fs, 0, 0]T + fp · (−u), (6)

until the DLO moves further than the contact point xc ·
(−u)< xt ·(−u) and loses contact with the fixture f ext

u < Fc.
The robot follower takes the same motion and forces as the
robot leader.

C. Skill-based planning
The skill engine at the high level selects from the two

manipulation skills to establish contact with each fixture
following the logic presented in Fig. 2. The shape tracking
skill is employed until both robots reach appropriate poses
close to ψi. After that, the follower will also grasp the DLO
and the clip fixing skill is activated. This process is repeated
until all fixtures generated in Section III are achieved.

V. EXPERIMENTS

We used two 7 DOF Franka Emika Panda robots for the
real-world DLO manipulation experiments, both of which are
equipped with joint torque sensors and provide 6-axis force
torque estimation at the end-effectors. Since the clips in our
task are small, we mount each clip on an additional platform
to form a fixture (see Fig. 1). The positions and orientations
of fixtures are estimated from markers by an Azure Kinect
camera on the top.

A. Fixture Positioning
To show the capability of our placing algorithm to handle

more complex shapes, we run the test with l′g set as half
of the real gripper size l′g = 0.5 · lg. One example of placing
results are presented in Fig. 3. The blue markers represent
fixtures placed at local maximum and minimum of ROC
and the green markers represent fixture positions generated
recursively to reduce Js.
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Fig. 4: Clip fixing skill evaluation. The curves describe contact
forces in u direction during clip fixing. The comparison between
using the proposed clip fixing skill and using only motion control
can also be seen in the video.

B. Clip Fixing

To evaluate our contact-aware clip fixing skill, we compare
the detected external force in the fixing process using our
skill and using purely motion control. The detected fext
from the robot leader is plotted in Fig. 4, where one falling
represents one contact with the fixture. Our clip fixing
skill experiences only one contact stage, and stops moving
further or applying forces once the cable is fitted snugly
in. In contrast, the fixing by motion control keeps moving
regardless of contact, and hits the back end of the clip. In the
real production process, this blindness may lead to damage
to the clips.

C. Cable Routing

Finally, we evaluate the whole framework with a drawn
desired shape as input and a red usb extension cable as object
to be manipulated. Fixtures are placed at four generated
positions. The motion planning in Section IV-A is imple-
mented with MoveIt [14] using the Open Motion Planning
Library [15]. After the robot leader guides the DLO to one
clip fixture, the robot follower approaches the DLO while
avoiding collision with the leader and grasps it. Both robots
then apply stretching and pushing force to the DLO to
insert it into the clip fixture. As contacts with all fixtures
are established, the robots release their grasp on the DLO,
leaving it securely fixed in place by the clips. The whole
motion and clip fixing process can be found in the video at
https://youtu.be/YbVDOgT3vc4.

VI. CONCLUSION

We presented a framework to manipulate DLO using
environmental contacts, with DLO status estimated online
from visual and force information. Our fixture placing al-
gorithm firstly generates appropriate positions of fixtures
based on desired shape. An object-centered skill engine then
selects designed manipulation skills based on DLO status
to establish contact with each fixture. In the real-world
experiments, our framework successfully controls two robots
to manipulate the DLO into the desired shape. Future work
will be using grippers with more degrees of freedom to
achieve more complex shapes.
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