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Abstract—Fabric manipulation is a challenging area in robotics
due to the vast state space and complex dynamics. Learn-
ing methods show promise as they enable learning behaviors
directly from data. While most previous methods rely on
simulation or large datasets, an alternative is learning fabric
manipulation from human demonstrations. In this work, we
collect demonstrations directly from humans performing the
task for a fast data collection pipeline. Using a small number
of demonstrations, we learn a pick-and-place policy deploy-
able on a real robot without additional robot data collection.
We demonstrate our approach on a fabric manipulation task
involving smoothing and folding, successfully reaching folded
states from crumpled initial configurations. Videos available at:
https://sites.google.com/view/foldingbyhand

Index Terms—Deep Learning in Grasping and Manipulation,
Visual Learning, Perception for Grasping and Manipulation

I. INTRODUCTION

Fabric manipulation is a task with complex dynamics and
high-dimensional state, which makes it difficult for traditional
robot control methods, but a good candidate for learning based
methods. However, existing approaches often rely on large
datasets and simulations, which can be time-consuming and
suffer from the sim-to-real gap. We propose a novel method
for learning multi-step fabric manipulation tasks directly from
a small number of demonstrations of humans performing the
task, avoiding both the sim-to-real gap and extensive data
collection.

Our approach leverages an off-the-shelf hand-tracking
model to recover human pick-and-place actions from videos,
which are then used to train a robot policy. We introduce a
sample-efficient architecture for learning pick-and-place poli-
cies from human data by predicting place heatmaps condi-
tioned on pick location, extending the idea of pick-conditioned
placing [1] to imitation learning with spatial action spaces.

We demonstrate our method on a challenging task of folding
a cloth from a crumpled configuration. Unlike prior works that
separate smoothing and folding tasks [2], [3], our approach
learns an effective manipulation policy for the whole task
using only 15 demonstrations. We show that our spatial action
space, pick-conditioned policy approach, effectively learns
fabric manipulation with limited demonstration data.
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Fig. 1. Our method learns a policy from 15 demonstrations of a human
performing the task. The resulting policy can then reach the folded state from
new crumpled configurations at test time.

II. RELATED WORK

A. Deformable Object Manipulation

Manipulation of cloth has been a long-standing challenge for
robotics [4]-[8]. Early approaches made use of geometric
cues [9] and engineered features [10] for grasp detection for
smoothing and folding. However, recent progress in cloth
manipulation has been impressive due to advancements in
learning-based approaches [11]-[14]. In particular, spatial
pick-and-place action spaces allow for the use of Fully Con-
volutional Networks for learning action affordance heatmaps
[15] as well as dynamics models [16] to achieve sample
efficiency. Such architectures have also been used to learn
fabric smoothing via flinging [17], bimanual stretching [18]
and pick-and-place [3], as well as one-step fabric folding
policies [19]. [1] learns a pick-conditioned placing value
function for fabric smoothing, improving sample efficiency.
Our method extends the idea to a fully-convolutional network
for imitation learning with few demonstrations.

[2] and [3] learn T-shirt folding using self-supervised and
human-annotated data or imitation learning combined with
analytic methods. Both methods divide the task into separate
smoothing and folding stages. Our approach learns a single
policy from human hands for manipulating a cloth from a
crumpled to a folded state.

B. Learning from Human Videos

Robotics research has advanced in learning from human-
performed tasks. [20] uses pre-trained human pose estimation
models for real-time robot arm control, while other work learns
from human videos for tasks like cooking [21]. Human video
demonstrations combined with limited robot learning have



been explored for mobile manipulation [22]. Our work fo-
cuses on learning fabric manipulation pick-and-place policies
directly from human videos without additional robot training
or data collection.

ITIT. APPROACH

A. Problem Definition

Our study focuses on enabling a single robot arm to transform
a crumpled fabric into a folded state. The robot utilizes an
overhead camera to observe the fabric on a flat surface and
execute pick-and-place actions based on image locations. This
spatial action space [23], is common in deformable object
manipulation [3], [15], [16], [19]. We aim to identify the
best pick-and-place action from the image observation. Unlike
previous methods that only smooth [1], [24], [25]; assume
a pre-smoothed state for folding [15], [19]; or use separate
smoothing-folding policies with switching criteria [2], [3]; we
seek a unified policy for the entire smoothing-folding process.

B. Human Demonstrations

Fabric manipulation is a complex, long-horizon task, and
learning behaviors from self-supervision without human guid-
ance is difficult. Although engineered biases like corner
grasping [15], [19] help, learning long-horizon tasks remains
challenging. Human demonstrations are a natural alternative.
Instead of using robot-controlling user interfaces [3], [26], we
aim to learn directly from videos of humans using their hands
for fabric manipulation.

We use Mediapipe Hands [27], a real-time hand tracking
system, to estimate digit positions. It is trained on 30,000
real-world hand images and localizes 21 hand coordinates,
including fingertip locations. We track grasps by monitoring
the distance between the thumb and index fingertips. When
below a threshold, we record the average fingertip location
as the pick location. The place location is the average of the
thumb and index fingertip locations when the grasp is released,
and the distance surpasses the grasp threshold.

We record observations before and after actions are per-
formed, by identifying periods of minimal pixel change. The
human removes their hand, an image is captured, and then
they perform an action. This allows for natural data collection
for fabric manipulation tasks.

C. Learning to Imitate Pick-and-Place Actions
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Fig. 2. A visualization of our pick-conditioned place prediction approach. We
concatenate the observation image with a candidate pick, taken from the cloth
mask, represented as a 2D Gaussian image. The network is trained against
the place heatmap label.

To efficiently learn pick-and-place behaviors from human
demonstration data, we need a model that can be trained with
minimal data, reducing data collection costs. Prior work [1]

has shown that learning only placing actions, conditioned on
pick locations, improves sample efficiency for fabric smooth-
ing policies. We extend this approach for supervised imitation
learning by predicting place heatmaps conditioned on pick
locations. Our fully-convolutional network is conditioned on
pick locations, using an image channel with a 2D Gaussian
centered on the pick location, similar to [19]. We train the
model to predict place locations via heatmap image labels
created with 2D Gaussians centered on the place location. We
can then estimate the place location by taking the argmax
pixel location over the place heatmap, conditioned on a
candidate pick location. Since this method would only work
for known pick locations, we create artificial negative samples
by randomly selecting pick locations on the cloth and training
against a heatmap of zeros. This allows the model to output
higher placing probabilities for correct pick locations and
lower probabilities for incorrect ones. We find the pick action
maximizing place probability by taking the argmax over all
possible pick locations in the cloth mask. During training,
we evaluate our model by sub-sampling the cloth mask by
a factor of 2 to reduce training time and memory. At test
time, we evaluate every possible pick location in the mask for
full-resolution pick selection. Our approach adapts the idea
from [1] for supervised, imitation learning settings with spatial
action spaces.

IV. EXPERIMENTS

We demonstrate our approach on a real-world fabric manip-
ulation task, folding a cloth in half twice into a small triangle,
beginning from a crumpled initial configuration. Folding a
square fabric into this shape, assuming a smooth initial state,
has been shown in prior work [15], [19], [28]. To the best of
our knowledge, we are the first to train a single policy that
can reach a folded state from a crumpled state.

A. Experimental Setup

Our experimental setup consists of a Franka Emika Panda
robot workstation, with a RealSense LL515 camera. We make
use of depth for observation, and infrared for cloth masking,
while RGB is used for visualization only. The workspace is
40 x 40cm square of PVA foam. The fabric is a 22 x 22cm
square of red polar fleece.

Using our hand-tracking approach, we collect a dataset of
15 demonstration episodes, with 10 for training and 5 for
validation. Each episode consists of a human demonstrating
single-handed manipulation of the full crumpled-to-folded
task. We use depth images for generalization across various
cloth appearances and mask the images to isolate the cloth [2],
[15], [17], [19], [28]. Infrared images help isolate cloths from
the background easily. To augment the dataset by a factor of
20, we apply rotation, flips, scaling, and Gaussian noise to
depth images, along with depth scaling for cloth thickness
robustness.

We execute the trained policy on the real robot, transforming
pixel coordinates to the robot’s workspace using a linear trans-
form. The robot adjusts its wrist angle for consistent actions,
moves down until it senses contact, grasps, and executes the
action. A 3D-printed sloped gripper enables effective cloth
pinching. We use a grasping width heuristic to differentiate



TABLE I
EVALUATION RESULTS FROM CRUMPLED INITIAL CONFIGURATION.
SUCCESS IS OUT OF 5 RUNS.

Method Success IoU ISC
Human 5 0.883 0.98
PickToPlace (Ours) 5 0.843  0.965
Pick+Place 2 0.752  0.846
Human 5 0.876 0.98
PickToPlace (Ours) 4 0.801 0.958
Pick+Place 0 0.776  0.851
Human 5 0.86 0.982
PickToPlace (Ours) 4 0.811 0.978
Pick+Place 0 0.684  0.909
Human 5 0.873  0.981
Mean PickToPlace (Ours) 4.334 0.818  0.967
Pick+Place 0.667 0.737  0.869

between top-layer grasping for smoothing and grasping all
layers for folding, adjusting the finger width to be wider at

the edge of the mask and narrower otherwise.
B. Task

We evaluate the policy on a set of initial crumpled configu-
rations, following [24], for repeatability. A human resets the
cloth, and we test three configurations with five trials each.
The policy attempts to smooth and fold the cloth autonomously
within 15 timesteps.

Deformable object manipulation metrics are challenging to
define due to difficulties in perceiving the object state. As such,
we report several metrics:

Success: We qualitatively assess folding success, consider-
ing a successful fold when the triangle is reached by folding
the smoothed square twice, allowing one minor defect.

Intersection Over Union (I0U): We report the IOU of the
fabric mask, aligning it with a final folded state mask. We take
the highest IOU across all timesteps for each episode.

Intermediate Smoothing Coverage (ISC): We report the
fabric coverage ratio compared to a smoothed cloth mask, tak-
ing the highest coverage score across all timesteps, indicating
how well the fabric was smoothed during the episode.

C. Baselines

To evaluate our method’s performance and validate the effec-
tiveness of our pick-conditioned place model, we compare it
against human performance and a baseline architecture.

Human: We show the performance of a human using a
single hand to solve the task. This represents an approximate
upper bound for our method, which is trained to mimic human
demonstrations.

Pick+Place: We demonstrate a simple FCN network that
outputs two heatmaps directly for pick-and-place, based on
the policy from [3]. The network architecture is otherwise the
same as ours, but the place is not conditioned on the pick. If
the pick location is predicted off the fabric, we find the closest
point on the fabric mask to the predicted pick location.

D. Results

In the robot evaluation experiments, we assess our policy’s
ability to consistently reach a folded configuration from
initially crumpled states using a small number of human

PickToPlace (Ours)

Pick+Place

Fig. 3. Comparison of runs by our approach (top) and Pick+Place baseline
(bottom). Initial configurations and best states based on IoU are shown.
Successes in green, failures in red.

demonstrations and compare our pick-conditioned place model
to a baseline model. The results for the full task are shown in
Table I.

Our proposed method was successful in 13 of the 15 runs,
achieving an average score of 4.334/5 or 86.7%. The policy
consistently performs well at smoothing, with high interme-
diate smoothing coverage (ISC) and IOU scores. However, in
one failure case, the policy chose to fold before the fabric
was adequately smoothed, resulting in a crumpled final folded
state.

The baseline network architecture succeeded in smoothing
and folding the cloth twice out of 15 runs, with an average
score of 0.667/5 or 13.34% across tasks. We hypothesize its
low success rate is due to the difficulty of learning both
pick-and-place outputs with limited data and the lack of
conditioning between the pick-and-place locations, leading to
poor action choices.

E. Generalization

Tea Towel, Thin, Smooth Patterned Waffle Knit, Thin, Textured

Blue Washcloth, Thick, Toweling

Fig. 4. Our method can generalize to fabrics of a variety of appearances
and textures. We show the initial, smooth state before folding, and final
configurations from successful folding episodes.

Our method, trained on depth images, demonstrates gen-
eralization capabilities by handling a variety of cloths with
different visual properties, material properties, and shapes, as
shown in Figure 4. The model is robust to differences in
thickness, texture, and cloth shape, with only the grasping
width of the robot fingers needing adjustment for various
materials.

V. CONCLUSION

We present a method for learning fabric manipulation from
a small number of human demonstrations collected directly
from human hands, achieving over 85% success in folding
tasks. Our approach outperforms the baseline pick-and-place
architecture and generalizes to unseen fabrics. This work is
a step towards leveraging large, freely available online video
data for robotic manipulation. Future work includes expand-
ing to more tasks, incorporating bimanual manipulation, and
reducing reliance on unobstructed cloth visibility.
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