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Fig. 1. Dynamic-Resolution Model Learning for Object Pile Manipulation in the Real World. Depending on the progression of a
task, representations at different granularity levels may be needed at each model-predictive control (MPC) step to make the most effective
progress on the overall task. In this work, we construct dynamic-resolution particle representations of the environment and learn a unified
dynamics model using graph neural networks (GNNs) that allows adaptive selection of the abstraction level. In this figure, we demonstrate
a real-world task of gathering the object pile into a target region. Figures on the left show the task execution process and the corresponding
particle representation. The plot on the right shows the predicted optimal resolution at each MPC step, where the red circles correspond to
the frames on the left.

Abstract—Dynamics models learned from visual observations
have shown to be effective in various robotic manipulation tasks.
One of the key questions for learning such dynamics models is
what scene representation to use. Prior works typically assume
representation at a fixed dimension or resolution, which may be
inefficient for simple tasks and ineffective for more complicated
tasks. In this work, we investigate how to learn dynamic and
adaptive representations at different levels of abstraction to
achieve the optimal trade-off between efficiency and effectiveness.
Specifically, we construct dynamic-resolution particle represen-
tations of the environment and learn a unified dynamics model
using graph neural networks (GNNs) that allows continuous
selection of the abstraction level. During test time, the agent
can adaptively determine the optimal resolution at each model-
predictive control (MPC) step. We evaluate our method in object
pile manipulation, a task we commonly encounter in cooking,
agriculture, manufacturing, and pharmaceutical applications.
Through comprehensive evaluations both in the simulation and
the real world, we show that our method achieves significantly
better performance than state-of-the-art fixed-resolution base-
lines at the gathering, sorting, and redistribution of granular
object piles made with various instances like coffee beans,
almonds, corn, etc.

I. INTRODUCTION

Predictive models are core to robotic systems for naviga-
tion [8], locomotion [9], and manipulation [7, 21]. In robotic
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manipulation, learned dynamics models have demonstrated
impressive results. A learning-based dynamics model includes
an encoder and a predictive model. Scene representation
choices (e.g., latent vectors [6, 5, 11], object-centric [20, 3]
or keypoint representations [13, 12, 19]) affect expressiveness
and generalization capabilities, which makes it crucial for a
given task.

Prior work uses a fixed representation for the entire task, but
the optimal representation may differ depending on the object,
task, or stage. An ideal representation balances efficiency and
effectiveness [18, 1]. For instance, in object pile manipulation,
a more complex target configuration needs a finer model to
capture all the details. While for the same targets, we might
want representations at different abstraction levels for the most
effective actions at different stages, as shown in Figure 1.

We focus on manipulating object piles, a crucial task in
cooking, agriculture, manufacturing, and pharmaceutical sce-
narios. This task is highly challenging due to the environment’s
extremely high degrees of freedom [15], making it an ideal
scenario to demonstrate how we can learn dynamics models
at different levels of abstraction to achieve the optimal trade-
off between efficiency and effectiveness.

Our aim is to learn a dynamics model that can adaptively
express the world at different granularity levels based on the
task objective and observation. To achieve this, we introduce



a resolution regressor that predicts the optimal resolution
using self-supervised learning with labels from Bayesian op-
timization [4]. Besides the resolution regressor, our model
also includes perception, dynamics, and planning modules
(Figure 2).

During task execution, we follow a model-predictive control
(MPC) framework. At each MPC step, the resolution regressor
predicts the resolution most effective for control optimization.
The perception module then samples particles from the RGBD
visual observation based on the predicted resolution. The
derived particle-based scene representation, together with the
robot action, will be the input to the dynamics model to predict
the environment’s evolution. The dynamics model can then be
used for trajectory optimization to derive the action sequence.
Specifically, the dynamics model is instantiated as a graph
neural network consisting of node and edge encoders. Such
compositional structures naturally generalize to particle sets of
different sizes and densities—a unified graph-based dynamics
model can support model-predictive control at various abstrac-
tion levels, selected continuously by the resolution regressor.

We test our model in different object pile manipulation
tasks, such as gathering, redistributing, and sorting piles of
various objects, including corn kernels, coffee beans, almonds,
and candy pieces. Our model can adaptively determine the
resolution of the scene representation based on the current
observation and task goal, enabling the successful completion
of these tasks.

Our contributions are threefold: (1) a framework that dy-
namically determines the scene representation at different
abstraction levels, (2) comprehensive evaluations showing the
superiority of our dynamic scene representation over fixed
resolution, and (3) a unified robotic manipulation system for
various object pile manipulation tasks.

II. METHOD

In this section, we first present the overall problem formula-
tion. We then discuss the structure of our dynamic-resolution
dynamics models, how we learn a resolution regressor to
automatically select the scene representation, and how we use
the model in a closed loop for the downstream planning tasks.

A. Problem Formulation

Our goal is to derive the resolution ω to represent the
environment to achieve the best trade-off between efficiency
and effectiveness for control optimization. We define the
following trajectory optimization problem over a horizon T :

min
{ut}

c(zω
T , yg),

s.t. ω = g(y0, yg),

zω
0 = h(y0, ω),

zω
t+1 = f(zω

t , ut, ω),

(1)

where the resolution regressor g(·, ·) takes the current obser-
vation y0 and the goal configuration yg as input and predicts
the model resolution. h(·, ·), the perception module, takes in
the current observation y0 and the predicted resolution ω,

then derives the scene representation zω
0 for the current time

step. The dynamics module f(·, ·, ·) takes the current scene
representation zω

t , the input action ut, and the resolution ω as
inputs, and then predicts the representation’s evolution at the
next time step zω

t+1. The optimization aims to find the action
sequence {ut} to minimize the task objective c(zω

T , yg).
In the following sections, we describe (1) the details of the

perception module h(·, ·) and the dynamics module f(·, ·, ·)
in Section II-B, (2) how we obtain the self-supervision for the
resolution regressor g(·, ·) in Section II-C, and (3) how we
solve Equation 1 in a closed planning loop in Section II-D.

B. Dynamic-Resolution Model Learning

To instantiate the optimization problem defined in Equa-
tion 1, we use graphs of different sizes as the representation
zω
t = (Ot, Et), where ω indicates the number of vertices in

the graph. The vertices Ot = {oit}i=1,...,|Ot| denote the particle
set and oit represents the 3D position of the ith particle. The
edge set Et = {ejt}j=1,...,|Et| denotes the relations between the
particles, where ejt = (uj

t , v
j
t ) denotes an edge pointing from

particle of index vjt to uj
t .

To obtain the particle set Ot from the RGBD visual observa-
tion yt, we deploy the farthest point sampling technique [14]
to subsample Ot from the foreground but ensure sufficient
coverage. Different choices of ω indicate scene representations
at different abstraction levels, as illustrated in Figure 2a. The
edge set is constructed dynamically over time and connects
particles within a predefined distance while limiting the max-
imum number of edges a node can have.

We instantiate the dynamics model f(·, ·, ·) as graph neural
networks (GNNs) that predict the evolution of the graph
representation zω

t under external actions ut and the selected
resolution ω. In practice, we follow Li et al. [10] and use
multi-step message passing over the graph to approximate the
instantaneous propagation of forces. The dynamics model is
trained using the mean squared error (MSE).

C. Adaptive Resolution Selection

The previous sections discussed how to obtain the particle
set and how we predict its evolution given a resolution ω.
In this section, we present how we learn the resolution
regressor g(·, ·) in Equation 1 that can automatically determine
the resolution in a self-supervised manner. Specifically, we
intend to find the resolution ω that is the most effective for
minimizing the task objective given the current observation
y0 and the goal yg . We reformulate the optimization problem
in Equation 1 by considering ω as a variable of the objective
function as the following:

c∗(y0, yg, ω) = min
{ut}

c(zω
T , yg),

s.t. zω
0 = h(y0, ω),

zω
t+1 = f(zω

t , ut, ω).

(2)

For a given ω, we solve the above optimization problem via a
combination of sampling and gradient descent using shooting
methods [17] under a given time budget—the higher resolution
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Fig. 2. Overview of the proposed framework. (a) Our perception module h processes the input RGBD image and generates particle
representations at different levels of abstraction depending on the resolution ω. (b) The resolution regressor g takes the current observation
y0 and the goal yg as input. It then predicts the resolution ω we intend to represent the environment. The dynamics model f , conditioned
on the dynamically-selected resolution ω and the input action ut, predicts the temporal evolution of the scene representation zω

t . During
planning time, we calculate the task objective c(zω

T , yg) and backpropagate the gradients to optimize the action sequence {ut}.

representation will go through fewer optimization iterations.
For simplicity, we denote the objective in Equation 2 as c∗(ω)
in the following part of this section.

Given the formulation, we are then interested in finding the
parameter ω that can minimize the following objective:

min
ω

c+(ω) = c∗(ω) +R(ω),

s.t. ω ∈ (ωmin, ωmax),
(3)

where R(ω) is a regularizer penalizing the choice of an
excessively large ω to encourage efficiency. We use Bayesian
optimization [16] to find the optimal ω by iteratively sampling
ω and approximating c+(ω) using the Gaussian process.

To train the resolution regressor, we randomly generate a
dataset containing the observation and goal pairs (y0, yg).
For each pair, we follow the above optimization process to
generate the optimal resolution label ω∗. We then train the
resolution regressor ω = g(y0, yg) to predict the resolution
based on the observation and the goal via supervised learning.
Training the ω regressor is a self-supervised learning process,
as the labels are automatically generated via an optimization
process without any human labeling.
D. Closed-Loop Planning on Adaptive Repr.

Now that we have obtained the resolution regressor g,
the perception module h, and the dynamics module f . We
can wire things together to solve Equation 1 and use the
optimized action sequence in a closed loop within a model-
predictive control (MPC) framework [2]. Figure 2b also shows
an overview of the future prediction and inverse planning
process.

III. EXPERIMENTS

In this section, we evaluate the proposed framework in
various object pile manipulation tasks. In particular, we aim to
answer the following three questions through the experiments.
(1) Does a trade-off exist between efficiency and effectiveness

as we navigate through representations at different abstraction
levels? (2) Is a fixed-resolution dynamics model sufficient, or
do we need to dynamically select the resolution at each step?

A. Tasks

• Gather: Push the object pile into a target blob.
• Redistribute: Push the object piles into complex shapes.
• Sort: Sort two object piles to target locations without

mixing each other.

B. Trade-Off Between Efficiency and Effectiveness

The trade-off between efficiency and effectiveness can vary
depending on the current, and the goal configurations. As we
have discussed in Section II-C, given the resolution ω, we
set a fixed time budget to solve Equation 2. Intuitively, if
the resolution is too low, the representation will not contain
sufficiently detailed information to accomplish the task, the
optimization of which is efficient but not effective enough to
finish the task. On the contrary, the representation will carry
redundant information for the task and can be inefficient in
optimization for excessively high resolution.

We use Bayesian optimization and follow the algorithm
described in Section II-C to find the optimal trade-off on
Gather and Redistribute tasks in the simulation. We found
higher-resolution dynamics models do not necessarily lead to
better performance due to their optimization inefficiency.
C. Is a Single Resolution Model Sufficient?

We compared our dynamic-resolution dynamics model with
fixed-resolution dynamics models on Gather and Redis-
tribute tasks. Figure 1 shows how our model changes its
resolution prediction as MPC proceeds in the real world.
Trained on the generated dataset of optimal ω, our regressor
learned that fixing a resolution throughout the MPC process
is not optimal. Instead, our regressor learns to adapt the
resolution according to the current observation feedback.
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