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I. INTRODUCTION

In everyday life, people encounter and skillfully manip-
ulate Defromable Linear Objects (DLOs), such as cables,
ropes, threads, strings, and hoses. It would be beneficial to
give robots similar skills to enable them to perform surgical
suturing [1], knot tying [2], wiring harness assembly in
the automotive sector [3], or threading the lace through the
narrow hole [4]. A typical approach to manipulate DLOs is
to use their models to plan the motion and control commands
necessary to rearrange it to the desired state. In recent years,
there were many attempts to develop DLO models, such
as FEM-based ones [5], [6], using Cosserat rod theory [7]
or dynamic B-splines [8]. However, these models make
strong assumptions about the properties of the objects or
require significant amounts of computations to evaluate. A
response to these problems was the trial to develop a neural
network-based model [9], which can mimic the behavior of
a particular DLO with one end rigidly attached, based on
the careful measurements of the cubic markers located along
the DLO, which seems rather an unrealistic scenario in the
typical problems of DLO manipulation.

In this paper, we present a neural network-based approach
to develop a quasi-static model of the real DLO being
manipulated by a pair of robots without the use of any
markers (see Figure 1). DLO shape is being tracked with an
RGBD camera, and the upgraded approach proposed in [10].
Based on these measurements, we learn a machine learning
model able to predict the state of a DLO, given an actual
DLO state and an initial and final pose of the end-effectors
(EEs) holding the DLO.

Our main contribution is the first data-driven 3D model of
a DLO, that can be used without any markers on featureless
DLOs. Our proposed model works in a partially observable
setting, as it is impossible to directly detect the bend and
twist of the raw DLO using just RGBD data, and shows
the ability to accurately predict the behavior of the DLO.
We evaluate a neural model of a DLO proposed in [9]
(INBiLSTM), a simple fully connected architecture (FC),
and analyze the impact of different data representations on
the model’s accuracy. We introduce a simple but effective
data augmentation procedure that significantly improves the
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Fig. 1. Prediction of the markerless DLO shape in a different configuration
of robotic arms.

accuracy of both architectures and enables the FC network
to achieve accuracy similar to INBiLSTM while being sub-
stantially more computationally efficient. Moreover, we show
that the knowledge gained for one DLO is transferable for the
same DLO handled at different points (different lengths) and
to DLOs of different physical parameters. Furthermore, we
evaluate the possibility of retraining a model pre-trained on a
different DLO setup. To the best of the authors’ knowledge,
this is the first analysis of the transferability of the neural
DLO models. To facilitate the research on DLO modeling,
we make our code and datasets publicly available at https:
//github.com/PPI-PUT/neural_dlo_model.

II. NEURAL NETWORK-BASED QUASI-STATIC MODEL OF
A DLO

Our goal is to learn from data a model f for predicting
the next DLO state sn = f(sn−1, pn−1, pn), given the prior
DLO state sn−1 and an actual pn−1 and next pose pn of the
robots EEs holding the DLO. We define the state of DLO as
a sequence of N points in 3D space. The pose of the robots
EEs consists of the positions t and orientations R of the
left and right robotic arm TCPs i.e. p = (tL, RL, tR, RR).
We consider only a quasi-static DLO manipulation, as it is
enough to accurately describe slow DLO reconfigurations
between steady-states [11].

A very important aspect of the problem we consider is that
we limit the perception system to a single RGBD camera,
and we assume markerless and textureless DLO, unlike the
most state of the art approches [9], [12], [13], [14], [15],
[16]. This assumption is motivated by the fact that in typical
bimanual robotic manipulation settings, we cannot stick any
markers to the DLO we want to manipulate and that many
DLOs do not have detectable visual or geometrical features
that could enable us to track the twist along them.

https://github.com/PPI-PUT/neural_dlo_model
https://github.com/PPI-PUT/neural_dlo_model


A. Data representations

To efficiently learn a model, appropriate data represen-
tations are essential. Particularly, we must define how to
represent the state of a DLO and the orientation of the EEs.
Regarding the representation of orientation, we analyzed
three concepts, i.e., quaternions, rotation matrix, and axis
angle. In terms of the DLO state, we use a sequence of 64
3D points. This representation does not describe the DLO
state fully, as it lacks information about the twist along the
DLO. In markerless and textureless settings, it is impossible
to detect the twist from a sequence of 3D points accurately.
However, we expect that some notion of the twist can be
seen in the geometry of a given DLO, given enough data
to differentiate between the deformations innate for a given
DLO instance and the twist along it.

To introduce a translation invariance of the DLO shape,
we represent the DLO as a sequence of 3D points expressed
in the coordinate system located in the middle of the gripper
pad (right was selected) and orientation aligned with the
coordinate system of the right manipulator base to maintain
the direction of gravity vector w.r.t. the DLO. Another
approach to achieve the translation invariance is representing
the DLO as a sequence of difference vectors between points.
Finally, one has to decide how to represent the motion of
EEs, whether by the initial pn−1 and end pn poses (IE), or by
initial pose pn−1 and a change of the pose δpn = pn−pn−1

(Diff).

B. Neural network architectures

Having the data representations defined, we can focus on
how to process them to predict the DLO motion accurately.
Similarly to [12], we propose to use a neural network (NN)
to approximate the function f . In this paper, we considered
two NNs: INBiLSTM proposed in [9], adjusted to comply
with the considered task, and a simple, fully connected
architecture (FC). Both networks were trained to predict the
change in the position of the points on the DLO between
EEs states.

III. DATASET

A. Dataset collection

For detecting the DLO shape in the RGBD image, we
used a DLOFTBs algorithm [10] acting on the DLO mask
extracted based on a hue-based segmentation. The output of
this method is a 3D B-spline curve representing the shape
of the DLO. However, we observed that in a bimanual
manipulation setting, the ends of the DLO are often not
clearly visible to the camera. This makes it harder to stably
track the points on the DLO. Therefore, we propose to
utilize the information about the grippers handling a DLO
and include their TCPs in the list of points on the DLO.
To achieve a stable representation, we decided to fit a B-
spline to the points on the DLO and grippers TCPs, and then
compute N equally distant points on the DLO (where the
distance is computed along the B-spline curve). Moreover,
we observed that using the Kinect Azure sensor, the quality
of the DLO depth estimation is reduced when the depth of

the background is close to the DLO, especially at the ends
of the DLO, as they are close to the grippers. To address this
issue, we decided to neglect the points on ends of a DLO
that lie too close to the grippers.

To collect the dataset we utilize 2 UR3 robots with
custom 3D printed grippers and an Azure Kinect camera
with the above-described DLO detection algorithm. We were
collecting EEs poses and DLO states in sequences of 20
random moves of both arms with enforced constraints to
prevent ripping the DLO. For each sequence, the initial state
of the system was chosen manually to cover a wide spectrum
of system configurations. Finally, we generated data points
by choosing pairs of system configurations from the same
sequence. As a result, each sample from the dataset consists
of the initial and end EEs poses pn−1, pn and DLO states
sn−1, sn.

In this way, we collected several datasets: (i) 50 cm long
two-wire cable (40368 training / 6920 validation / 5736 test
samples), (ii) 45 cm long two-wire cable (18950/4738/3220),
(iii) 40 cm long two-wire cable (20596/3208/3628), (iv)
50 cm long solar cable (3262/298/474), and (v) 50 cm long
braided cable (4198/530/812).

B. Data augmentation

In this paper, we propose a simple data augmentation
technique that can be applied to introduce a critical inductive
bias to the predictions of the neural network-based DLO
model. We assumed that the considered DLO motions are
quasi-static, and we would like to model them using a
function f(sn−1, pn−1, pn). One of the critical properties we
would like a function f to possess is to satisfy the following
equality f(sn−1, pn−1, pn−1) = sn−1, i.e., if there is no
change in the pose of the EEs then should be no change of
the DLO state. Because this property is not automatically
satisfied due to the architecture of our models, we propose
to add to the dataset samples that represent the case of
no motion of the arms at all DLO configurations from the
dataset.

IV. EXPERIMENTAL EVALUATION

A. DLO shape prediction

We start our experiments with the comparison of FC
and INBiLSTM DLO neural models and evaluation of all
considered data representations on the dataset of 50 cm
long two-wire cable. Moreover, we simultaneously want
to evaluate the impact of the proposed data augmentation
technique. The results of these experiments are shown in
Figure 3. For comparison, we use the L3 error introduced
in [10], related to the L3 error computed between initial
and ground-truth cable pose after the move. We observed
that the relative error obtained by the FC method without
augmentation is higher than for INBiLSTM. However, when
augmentation is used, then the performance of both models is
very similar. Moreover, we see that augmentation improved
the performance of all considered models such that there are
almost no errors higher than 50%. Relative high error values
may be caused by problems with an accurate estimation of



Fig. 2. Sequence of predictions (marked with blue) of the two-wire cable shape while being manipulated (movements marked with red) by two UR3
robotic arms.
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Fig. 3. Statictics of the relative error [%] of the neural DLO models
(INBiLSTM – left, FC – right) with different data representations and
augmentation (lower plot). Lighter colors denote IE representation, while
darker the Diff representation. Whiskers denote the rotation representation:
solid – quaternion, dashed – rotation matrix, dash-dotted – axis angle. In
turn, the box style represents if the DLO is represented by the coordination
of the points on it (solid) or by the differences of these points (dotted).

the cable shape in cases when the cable shape does not
change much. While, in general, the way of representing the
data does not have a major impact on the results achieved, we
observe that representing the movements by initial and end
configurations of grippers is slightly more effective for both
models. Note that while both INBiLSTM and FC models
achieve similar accuracy, the inference time is two orders
of magnitude lower for FC. In Figure 2, we present the
DLO shape predictions of the best-performing FC model for
a sequence of bimanual robotic manipulation.

B. Generalization

1) DLO length: One of the commonly overlooked gener-
alizations regarding the neural network-based DLO modeling
is the cable length. In this experiment, we assess the impact
of the pretraining on the 50 cm two-wire cable dataset on the
performance on 40 cm and 45 cm long segments of the same
cable. The results of this analysis are presented in Figure 4.
One can see that even the model that was not trained on
the shorter DLOs achieves relatively reasonable performance
(about 35% of mean relative error). However, retraining on
the specific training sets further improves it. While training
on 0.1% of the 40 cm and 45 cm training sets (20 and 18
samples) is not enough to achieve significant improvement,
the use of 1 or 10% results in the median of less than
20% of relative error. We can also see that the pretraining
is beneficial regarding the relative error up to 10% of the
training set. Nevertheless, in all cases, pretraining speeds up
the training by at least 15 up to 100 times.
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Fig. 4. Relative error statistics for 40 cm and 45 cm of two-wire cable
datasets for different sizes of the training set. Dashed whiskers denote results
obtained with the model pretrained on 50 cm dataset.
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Fig. 5. Relative error statistics for models trained using combinations of
2-wire, braided, and solar cables datasets. Results for different DLO types

2) Different DLOs: Another very important ability of
the model is to handle multiple DLOs types at once or
even generalize to previously unseen ones. We evaluated
these capabilities by training the NN on combinations of
3 datasets (2-wire, braided and solar cables) and evaluating
the models on each of them (see Figure 5). One can see
that, while in general, training on the other DLO type
gives a rough estimate of the DLO behavior, to achieve the
best performance, the training on the specific DLO seems
inevitable. Nevertheless, for braided and solar cables, models
trained on a dataset that does not include them obtained
results close to the optimal ones.

V. CONCLUSIONS

In this abstract, we proposed a solution to quasi-static
neural network-based markerless DLO modeling for biman-
ual robotic manipulation. We proposed a simple but efficient
data augmentation procedure that allowed a very simple and
computationally cheap neural-based DLO model to achieve
the SotA performance. The proposed solution was evaluated
on the introduced datasets with real-world measurements
from an RGBD camera. We analyzed the potential of the
method for generalization in terms of the DLO length and
type.
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