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I. INTRODUCTION

Scooping is an instinctive and straightforward skill for
humans to acquire. We utilize spoons and shovels to scoop
fluid and granular materials. This skill can be generalized
to a variety of tasks, from ladling soup and collecting peas
with a spoon on a dining table to excavating soils on a con-
struction site. While a small amount of works have studied
autonomous robotic scooping [1]–[4], it is still a challenging
task for robots due to the high-dimensional interaction space
involving the end-effector and the dynamic materials. What
is more, because of the complex dynamics of the fluid
materials (e.g., water), few prior works have investigated
and formulated the problem of fluid or water scooping.
Meanwhile, goal-conditioned water scooping can be very
helpful in industry or daily life, as it can bring convenience
for downstream tasks, such as water transportation [5], water
pouring [6], [7], and caregiving [8], [9].

In this work, we formulate the problem of goal-
conditioned water scooping, and propose a goal sampling
adaptation method for curriculum reinforcement learning
(RL) method to solve long-horizon goal-conditioned scoop-
ing tasks. As shown in Figure 1, our proposed method can
successfully scoop a specific amount of water from a water
tank with small errors, and then reach a desired goal position
with different containers in both simulations and physical
robot settings. This task presents three main challenges.
Firstly, it is a long-horizon task with a multi-modal goal
state space which incorporates the position and water amount
goals, so the policy is required to learn different types of
motions to reach both goals, i.e., the container needs to first
move downwards to scoop a targeted amount of water, and
then lift to reach the desired position goal. Secondly, the
initial state of the task is randomly initialized over different
water states, and a large space of position goals and water
amount goals. Thus, the policy needs to accommodate a wide
range of high-dimensional random situations and has good
generalizability. Thirdly, the water dynamics is complex,
controlling the water amount of scooping under various
changing conditions is nontrivial. Our work is related to
previous efforts in water manipulation [10]–[12], learning
for goal-conditioned deformable object manipulation [13]–
[16], and goal-conditioned curriculum RL [17]–[19], while
no prior approaches have been proposed for the long-horizon
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Fig. 1: This figure depicts our goal-conditioned water scoop-
ing tasks. The task is randomly initialized over different
water states (i.e., waterlines and fluctuations in the tank), dif-
ferent targeted water amounts and targeted positions (shown
as a small white box). Our method can scoop the water to
the targeted place with a small amount error using different
containers in simulation, and can generalize well to real-
robot scooping under various configurations.

robotic water scooping tasks with multi-modal goals. To this
end, our work is developed to solve these challenges, and
we summarize our contributions as follows.

• To the best of our knowledge, we are the first to
formulate and benchmark the tasks of goal-conditioned
water scooping with RL.

• We propose a goal-factorized reward formulation and
a novel goal sampling adaptation method, GOATS, for
efficient curriculum RL on our water scooping tasks.

• Our proposed method achieves low amount errors in
simulative scooping tasks with a large number of vari-
ations of initial water states and desired goal space,
and demonstrate good generalizability in challenging
real-robot scooping and out-of-distribution tasks. The
videos of this work are available on our project page:
https://sites.google.com/view/goatscooping.

II. METHODOLOGY

A. Problem Formulation for Water Scooping

In this paper, we formulate the water scooping task as
a goal-conditioned RL task. We aim to learn a policy
parameterized by θ, πθ, to control the container to scoop a
specific amount of water in the tank and move to a targeted
position above the tank. At the start of each episode, the
initial water state in the tank, which encloses the water
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Fig. 2: This figure demonstrates the process of position
goal sampling adaptation and the amount goal sampling
adaptation. Here, diamonds on the left are samples from the
desired, interpolation, or initial distributions.

amount, dynamics, and the initial position of the container, is
sampled from the environment’s initial state distribution ρ0.
Meanwhile, the desired goal state gdesired = {gpdesired, g

a
desired}

is sampled from a goal distribution ρg . Here, gpdesired ∈ R3 is
the desired position goal of the container in the workspace,
and gadesired ∈ [0%, 100%] is the desired water amount goal
in the container. At time step t, the scooping policy πθ

will take in an observation ot from the environment, the
desired goal state gdesired (fixed through an episode), and an
achieved goal state gtachieved, and output a policy distribution
πθ(ot, gdesired, g

t
achieved). The achieved goal state gtachieved =

{gp(t)achieved, g
a(t)
achieved} is a mapping or a subspace vector from

the current observation ot. Here, it shares the same space as
gdesired, and includes the real-time position of the container
g
p(t)
achieved and the water amount in the container ga(t)achieved. From

the policy distribution πθ(ot, gdesired, g
t
achieved), an action at

can be sampled and executed. Then, the agent will obtain
an observation for the next time step ot+1, a newly achieved
goal gt+1

achieved, and a reward rt = r(gt+1
achieved, gdesired), where

r(·) is the reward function of the water scooping task.

B. Goal-Factorized Reward Formulation
We represent gt+1

achieved and gdesired as the concatenated
vectors of their position goal and amount goal vectors
(e.g., gp(t+1)

achieved||g
a(t+1)
achieved and gpdesired||gadesired), respectively. We

propose to factorize the goal states and construct a hierar-
chical reward function combining sparse and dense reward
formulations as follows:

r(gdesired, g
t+1
achieved)

=1(∥gp(t+1)
achieved − gpdesired∥ ≤ ϵ)∥ga(t+1)

achieved − gadesired∥ − 1
(1)

This reward function means that dense positive feedback
will be produced when the container is close enough to the
position goal. It takes advantage of both the binary sparse
reward and the shaped (but simple) dense reward, and thus
it can help to both position goal and amount goal reaching.

C. Curriculum Learning via Factorized Goal Sampling
Adaptation

We propose Goal Sampling Adaptation for Scooping
(GOATS), which performs factorized goal sampling adap-
tation by generating intermediate position goal distributions
and amount goal distributions. We represent the desired goal
distribution as ρg = {ρpg, ρag} which decomposes ρg into a

desired position goal distribution ρpg and a desired amount
goal distribution ρag . First, an initial position goal distribution,
ρp0, and an initial amount goal distribution, ρa0 , are selected to
represent the initial state or initial achieved goal distribution
of the task. Then the intermediate distributions, ρpk and ρak,
are generated by interpolating between the initial goal distri-
butions (e.g., ρp0 and ρa0) and the desired goal distribution
(e.g., ρpg and ρag), respectively. Then the adaptive desired
position goals gp(k)desired and position goals ga(k)desired that represent
simpler tasks can be sampled from ρpk and ρak. A principled
approach to measure the task distribution similarity is the
2-Wasserstein distance [20]. Thus, the interpolations are the
Wasserstein barycenters on a geodesic,

ρpk := argmin
ρ′

(1− k)W (ρp0, ρ
′) + kW (ρ′, ρpg), (2)

ρak := argmin
ρ′

(1− k)W (ρa0 , ρ
′) + kW (ρ′, ρag), (3)

where W (·, ·) denotes the Wasserstein distance between two
distributions, k ∈ [0, 1] is a temporal factor to indicate the
procedure of the curriculum learning.

Algorithm 1 Goal Sampling Adaptation for Scooping (GOATS)
with Curriculum RL
Input: Desired position and amount goal distributions {ρpg , ρag}, initial

position and amount goal distributions {ρp0, ρa0}, reward function r(·),
initialized policy θ, replay buffer R

Output: Learned policy πθ

for each episode do
Update temporal factor k for curriculum learning
Update adaptive desired goal distributions ρpk and ρak

with k, ρpg , ρp0 , ρag and ρa0 by solving Eq. (2, 3)

Sample adaptive desired goals gp(k)desired ∼ ρpk, ga(k)desired ∼ ρak
for each step t do

Sample action: at ∼ πθ(ot, g
k
desired, g

t
achieved)

Step environment:ot+1 ∼ p(ot+1|ot, at)
Get gt+1

achieved from ot+1

Compute reward: rt = r(gkdesired, g
t+1
achieved)

Update replay buffer R
Update policy θ via SAC [21], HER [17]

end for
end for

As shown in Figure 2, in our scooping task, ρp0 is a uniform
distribution over a cuboid region near the bottom of the water
tank, ρpg is a uniform distribution over positions on a cuboid
region that encloses the targeted region, ρa0 is a distribution
over the 0% water amount, and equally distributed desired
(discrete) amount goals, and ρag is a uniform distribution
over only the desired (discrete) amount goals. We provide
an algorithm for GOATS in Algorithm 1.

III. EXPERIMENTS

A. Experiment Setup

We design the task and build our simulated scenarios
based on SoftGym [5], a 3D simulator for deformable object
manipulation by RL. We test all the methods on two types
of containers, including a bowl and a bucket, which have
different shapes, sizes, and volumes, as shown in Figure 1.
At the start of each episode, the initial water state is sampled
from more than 500 variations that include very shallow
waterlines. The baselines in simulation are composed of one
or several method elements including SAC, HER, Universal
Goal Sampling (GS), and Partially Adaptive GS, where



TABLE I: In this table, we display the performance in simulation with a single amount goal (70%) and multiple amount
goals (60%, 65%, 70%, 75%, 80%). The results are averaged over the best evaluation rewards in 3 seeds during training. The
corresponding model for each seed is then evaluated on 100 episodes, with randomly sampled initial waterlines, position
goals, and water amount goals, to obtain the absolute amount error.

Method
Bowl Scooping Bucket Scooping

Single Amount Goal Multi. Amount Goals Single Amount Goal Multi. Amount Goals

Reward ↑ Amount Error↓ Reward↑ Amount Error↓ Reward↑ Amount Error↓ Reward↑ Amount Error↓

SAC −69.41± 0.78 69.60%± 0.33% −61.21± 2.00 71.02%± 0.34% −71.20± 1.12 69.99%± 0.01% −69.47± 0.77 71.00%± 0.35%

SAC+HER −72.72± 0.32 67.28%± 1.66% −69.59± 2.32 63.36%± 5.91% −73.40± 0.47 52.35%± 13.79% −72.15± 1.05 55.76%± 0.35%

SAC+Universal GS −71.7± 0.69 69.51%± 0.40% −72.05± 0.41 71.02%± 0.34% −72.96± 0.65 70.00%± 0.00% −71.48± 1.28 70.83%± 0.43%

SAC+Partially Adaptive GS −72.89± 0.59 70.00%± 0.00% −71.87± 0.18 67.51%± 2.23% −73.73± 0.24 69.81%± 0.15% −73.14± 1.01 70.98%± 0.35%

SAC+HER+Universal GS −36.45± 4.41 26.18%± 14.33% −37.88± 2.48 11.24%± 2.51% −42.48± 1.04 12.76%± 2.60% −37.32± 1.24 13.39%± 0.69%

SAC+HER+Partially Adaptive GS −28.80± 0.41 8.54%± 1.11% −28.98± 0.43 7.43%± 1.41% −35.22± 0.35 9.61%± 2.68% −33.12± 0.60 14.16%± 3.16%

GOATS (Ours) −25.67± 0.32 5.93%± 1.20% −25.77± 0.60 4.99%± 0.37% −33.36± 0.69 9.97%± 2.09% −32.51± 0.61 7.45%± 1.65%

Fig. 3: This figure depicts trajectories under different scooping conditions for the UR5 robot. Here, all initial positions are
at 23 cm above the ground. AG means the amount goal, PG means the position goal (all cases have the same PG), and WL
means the initial waterline. The bucket dives deeper when the initial waterline is lower and the targeted amount is larger.

TABLE II: In this table, we display the absolute amount
errors in both the sim-to-real simulation and the real-robot
environments using a single trained model by GOATS. Each
value is an average over three tested position goals.

Initial Position Waterline 60% Amount Goal 65% Amount Goal 70% Amount Goal

(cm) Sim. Robot Sim. Robot Sim. Robot

Height 23cm
7.5 3.33%± 0.57% 1.66%± 0.75% 3.80%± 0.70% 6.58%± 3.06% 4.91%± 0.91% 11.27%± 1.75%

8.0 6.15%± 1.12% 4.39%± 2.94% 3.47%± 0.60% 2.67%± 0.98% 4.93%± 0.48% 4.95%± 2.62%

8.5 6.52%± 1.13% 5.64%± 0.83% 4.67%± 0.37% 3.74%± 1.51% 5.13%± 0.29% 5.31%± 2.79%

Height 30cm
7.5 3.66%± 0.23% 1.76%± 0.18% 5.79%± 1.20% 7.83%± 1.95% 5.08%± 0.92% 11.43%± 1.73%

8.0 3.98%± 0.30% 4.78%± 1.81% 3.64%± 1.53% 1.83%± 1.19% 3.28%± 0.52% 5.07%± 2.14%

(Unseen in training) 8.5 6.53%± 0.91% 6.90%± 0.99% 5.17%± 1.25% 2.93%± 1.14% 4.25%± 0.75% 1.78%± 0.73%

Height 40cm
7.5 4.31%± 2.31% 6.96%± 0.44% 5.21%± 0.99% 6.31%± 0.89% 3.92%± 0.50% 11.47%± 1.99%

8.0 3.94%± 0.56% 2.29%± 0.73% 3.06%± 1.34% 3.81%± 1.64% 4.13%± 1.01% 6.95%± 0.53%

(Unseen in training) 8.5 6.34%± 1.88% 7.90%± 1.97% 5.63%± 2.06% 3.85%± 0.52% 5.40%± 0.44% 5.11%± 3.04%

Universal GS maintains universal stable distributions for both
position and amount goals, and Partially Adaptive GS only
maintains a universal stable distribution for amount goals.
Furthermore, we evaluate our proposed method in real-robot
scooping using a UR5 robot (Figure 1) by limiting the bucket
velocity and acceleration in simulation and zero-shot transfer.

B. Results in Simulation

We demonstrate our results from the simulation in Table
I. GOATS can achieve higher rewards and lower success
water amount error than other methods, showing that our
method can successfully finish both the position goal and
amount goal reaching tasks. Comparing the amount errors
between using a single amount goal and multiple amount
goals on the same task, we can tell that training on multi-
ple goals can be beneficial and improve the amount goal-
reaching performance. SAC+HER+Partially Adaptive GS is
always better than SAC+HER+Universal GS, from which
we can conclude that performing position goal sampling
adaptation is very helpful to our scooping tasks. Mean-
while, the performance discrepancy between GOATS and

SAC+HER+Partially Adaptive GS shows the effectiveness
of the amount of goal sampling adaption. The results here
indicate that GOATS can accommodate complex water dy-
namics, different position and amount goals, and different
types of containers in the water scooping task.

C. Results in Real-Robot Scooping

We demonstrate trajectories from real-robot scooping in
Fig. 3. Comparing Fig. 3 (a) and (b), the trained policy can
adaptively adjust the trajectory from the identical start point
and PG to meet the same AG, and the bucket dives deeper
when the waterline is lower, resulting in amount errors 5.92%
and 3.07%, respectively. Furthermore, with the same WL,
Fig. 3 (c) and (d) show that the bucket can dive deeper
to get more water when the targeted amount is larger. The
corresponding amount errors on the robot are 2.76% and
−3.31%, respectively. This shows that our trained policy can
adapt to different water states in the tank and adjust scooping
schemes to reach different amount goals on the physical
robot. In Table II, We display the average absolute amount
errors in both robot and (sim-to-real) simulation settings.
We can find that the amount errors of robot scooping are
under 8% in most cases, and the sim-to-real gap is small.
We directly apply the trained policy to unseen initial bucket
positions in training without fine-tuning. Compared to the
performance on the in-distribution tasks (23cm), our method
shows no evident performance drop on two more difficult
out-of-distribution tasks (30cm, 40cm), and are surprisingly
better at various amount goal and waterline settings. This
shows that GOATS has good generalizability and are em-
powered with the potential to achieve more complicated tasks
when only training on simpler ones.
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