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Abstract— This work presents an algorithm for tracking
the shape of multiple entangling Deformable Linear Objects
(DLOs) from a sequence of RGB-D images. This algorithm runs
in real-time and improves on previous single-DLO tracking
approaches by enabling tracking of multiple objects. This is
achieved using Global-Local Topology Preservation (GLTP).
This work uses the geodesic distance in GLTP to define the
distance between separate objects and the distance between
different parts of the same object. Tracking multiple entangling
DLOs is demonstrated experimentally. The source code is
publicly released.

I. INTRODUCTION

Consider an automated robotic system which monitors in
real-time the shape of a deformable linear object (DLO),
for example a rope, a wire, or a string. This system could
perceive the DLO in RGB-D imagery and estimate its
configuration to perform a closed-loop manipulation task
such as shape control or wire routing, or it could moni-
tor the DLO for collision prevention [1]–[6]. These tasks
are common in applications like robotic surgery, industrial
automation, power line avoidance and human habitat main-
tenance. Previous work used physics simulation, including
Finite Element Method (FEM) analysis, multi-physics, and
dynamics, to model DLO motion [7]–[9], and motion plan-
ning frameworks predict minimal-energy wire configurations
using the wire tips as boundary conditions [10]–[12]. This
work builds on existing tracking methods through tracking
multiple deforming and entangling DLOs simultaneously.
This work make the following contributions:

1) We propose a method of tracking the shape of multiple
DLOs in real-time. This is achieved by using the
geodesic distance in the kernel describing how pairs
of nodes influence each other’s motion and setting the
distance between independent objects to infinity.

2) We demonstrate tracking of multiple DLOs without in-
stance segmentation in each frame. This is achieved by
performing instance segmentation (expensive) on the
first frame for initialization and performing semantic
segmentation (cheap) on subsequent frames.

3) We release the source code and demonstration data at:
https://github.com/RMDLO/multi-dlo.
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Fig. 1. Given a sequence of frames, Global-Local Topology Preservation
tracks the shape of multiple deformable linear objects simultaneously.

II. RELATED WORK

The Global-Local Topology Preservation (GLTP) algo-
rithm performs modified non-rigid point set registration to
map one set of points onto another using the Expectation-
Maximization (EM) framework proposed by the Coher-
ent Point Drift (CPD) algorithm [13]–[15]. The objective
function for EM in GLTP uses CPD with locally linear
embedding to preserve local topology. Non-rigid point set
registration from CPD and GLTP set the foundation for
several algorithms which perform DLO tracking under oc-
clusion, including CPD+Physics, Structure Preserved Regis-
tration, CDCPD, CDCPD2, and TrackDLO [16]–[21]. These
methods only demonstrate tracking one DLO at a time.

III. METHODS

For N points in R3 received at time t from a depth
sensor, Xt

N×3 = (xt
1, . . . ,x

t
N )T , the DLO shape can be

represented by a collection of M ordered nodes, Yt
M×3 =

(yt
1, . . . ,y

t
M )T . The shape of each of K DLOs in a scene is

represented by a different set of nodes, Yt
k∈[1,K], each con-

sisting of Mk nodes. Stacking all the Yt
k matrices vertically

produces Yt with shape M × 3, where M =
∑K

k=1 Mk. All
K DLOs are treated as one combined object in the tracking
process. From the tracking output Yt, the individual DLO
nodes are obtained by accessing the corresponding rows in
Yt.

Single DLO shape tracking algorithms generally perform
object instance segmentation (conventionally, through color
thresholding) in the RGB image first, and then segment the
point cloud based on the RGB image segmentation [19], [20].
Our approach only requires instance segmentation for the
first frame to initialize Yt. By treating all DLOs as one
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Fig. 2. Using Euclidean distance, the distance between nodes is the
Euclidean norm of their difference. Using geodesic distance, the distance
between two nodes on the same DLO is set to the sum of the segment
lengths between them. If the two nodes are not on the same DLO, the
distance between them is set to infinity.

deformable object, only semantic segmentation is required
in subsequent frames. This approach bypasses the limitation
of DLO instance segmentation in 2D RGB images, which
can be slow and perform poorly [22]–[25].

A. Gaussian Mixture Model (GMM) Node Registration

Tracking begins with Gaussian Mixture Model (GMM)
clustering as performed in [16]. The GMM clustering step
computes Yt as the centroids of Gaussian distributions from
which Xt points are randomly sampled with isotropic vari-
ance σ2. Assuming equal membership probability p(m) =
1
M and µ percent of the points are outliers, the GMM cost
function takes the form

EGMM(yt
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p(m|xt
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and D is a distance metric (discussed in Section III-E).

B. The Motion Coherence Theory (MCT)

Given node positions Yt−1 and Yt from consecutive time
steps, the MCT defines a spatial velocity field v(Yt−1) =
Yt − Yt−1 [26]. Nodes close to each other should move
coherently through the smoothest possible spatial velocity
field. For a spatial domain variable z and a frequency domain
variable s, the smoothness of the velocity field v(z) can be
measured by passing it through a high pass filter 1/G̃(∥s∥)
in the frequency domain as

EMCT(v(z)) =

∫
R3

|ṽ(s)|2/G̃(∥s∥)ds, (4)

where ṽ(s) and G̃(∥s∥) are the Fourier Transforms of v(z)

and G(∥z∥). By choosing G(∥z∥) = exp(−∥z∥2

2β2 ), this cost
term is equivalent to the cost term of the MCT. The parameter

β controls the width of high pass filter 1/G̃(∥s∥). Therefore,
a larger β leads to a smoother velocity field.

C. Locally Linear Embedding (LLE)

Locally Linear Embedding (LLE) represents a node yt−1
m

with its closest 2Q neighbors and a set of weights L.
At the next time step t, LLE preserves local topology by
reconstructing yt

m with its new neighbors and L:

ELLE(y
t
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∥yt
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L(m, i)yt
i∥2. (5)

The weights L are computed with methods outlined in [27].

D. Expectation-Maximization Update for GLTP

The total cost of GLTP is updated iteratively using the
EM algorithm. With v(z) encoded in yt

m as yt
m = yt−1

m +
v(yt−1

m ), the total cost is
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The solution to the above cost function takes the form [14]

v(z) =

M∑
m=1

wmG(∥z− ym∥). (7)

For readability, we denote Xt as X, Yt−1 as Y0, and use
the following notations to solve for wm and σ2 analytically
through EM:

• WM×3 = (wt
1, . . . ,w

t
M )T , kernel weights,

• PM×N , posterior matrix with P(m,n) = p(m|xt
n),

• GM×M , kernel matrix with G(i,m) = exp(−
Dyt

i
,yt

m

2β2 )

• HM×M = (I− L)T (I− L), LLE weights,
• d(a), the diagonal matrix constructed from vector a,
• tr(m), the trace of matrix m, and
• 1, a column vector of ones.

The solutions W and σ2 are computed from taking the
partial derivatives ∂E

∂W and ∂E
∂σ2 and setting them to zero as

W = (d(P1)G+ λσ2I+ ασ2HG)−1

· (PX− (d(P1) + ασ2H)Y0)
(8)

σ2 =
1

1TP1D
(tr(XTd(PT1)X)− 2tr((PX)TY0)

+ tr(YT
0 d(P1)Y0) + tr(WTGTd(P1)GW)

+ 2tr(WTGTd(P1)Y0)− tr(WTGTPX))

. (9)

The new node positions are Yt = Yt−1 +GW.



Fig. 3. Simultaneously tracking multiple DLOs with GLTP and geodesic proximity accurately estimates the shape of each DLO in demonstrations. By
comparison, GLTP with Euclidean proximity fails to accurately track DLO shape in both the Winding and Unwinding scenarios.

E. Geodesic Proximity

The MCT requires the node velocity field to be smooth,
where nodes spatially close to each other move in similar
directions with similar speeds. In the node velocity given by

v(ym) =

M∑
i=1

G(m, i)W(i, ·) =
M∑
i=1

G(Dyi,ym
)W(i, ·), (10)

Dyi,ym
is the distance between nodes yi and ym given

some distance metric D. Given G is Gaussian, G(Dyi,ym
)

is small if yi is far from ym. This produces a small
G(Dyi,ym

)W(i, ·), indicating the movement of yi has in-
significant influence on that of ym.

The Euclidean distance dyi,ym
= ∥ym−yi∥ is a common

choice for Dyi,ym
, however it is not the best choice for

representing the geometry of DLOs. If one DLO is resting
on top of another DLO, the movement of the top one
should have little influence on the movement of the bottom
one. However, the small Euclidean distance between nodes
near the intersection couples their motion together, causing
tracking failure as shown in Fig. 3.

To resolve this, we use geodesic distance for D and define
the node-to-node geodesic distance ρyi,ym

to be

ρyi,ym
=

{∑i−1
j=m ∥yj+1 − yj∥ if m ≤ i∑m−1
j=i ∥yj+1 − yj∥ if m > i

. (11)

If yi and ym are from two different DLOs, the distance
between them is set to infinity.

Similarly, two nodes close in Euclidean distance to an
intersection but from different DLOs should have different
proximities to points near the intersection. Where yc1 and
yc2 are the two nodes closest to point xn, we define the
node-to-point geodesic distance ρym,xn

as

ρym,xn =


dyc1

,xn + ρyc1
,ym

if ρym,yc1
≤ ρym,yc2

dyc2
,xn + ρyc1

,ym
if ρym,yc1

> ρym,yc2

dym,xn if m ∈ {c1, c2}
. (12)

IV. RESULTS

We qualitatively demonstrate simultaneous multiple DLO
shape tracking with intersection among independent objects.

For these demonstrations, we ran tracking with Q = 3, β =
0.8, λ = 1, α = 3, and an optimization function tolerance of
ϵ = 10−5. We show performance in two scenarios:

1) Entangling–Three ropes lie parallel on a table. The
ropes are crossed over each other and all three become
twisted. This scenario demonstrates tracking when
DLOs are wound, knotted, or tied.

2) Disentangling–Three ropes lie in a twisted configu-
ration on a table. The ropes are uncrossed until all
three ropes reach a separated, parallel configuration.
This scenario demonstrates tracking when DLOs are
unwound, unknotted, or untied.

The raw data comprise point cloud and RGB image data
collected as the ropes are first wound and then unwound. The
data are saved in one Robot Operating System (ROS) bag
file. For initialization in both scenarios, instance segmenta-
tion was performed manually on the first frame due to the
limitations of existing DLO instance segmentation algorithms
[24], [25], [28]. The subsequent frames used color threshold-
ing as the semantic segmentation input. The tracking results
for these scenarios shown in Figure 3 highlight the accuracy
of geodesic GLTP for multi-DLO shape tracking and the
failure of Euclidean GLTP for this problem.

V. CONCLUSIONS AND LIMITATIONS

We introduced a real-time, accurate algorithm for tracking
multiple DLOs. One limitation of the method proposed is that
a DLO could penetrate itself or other DLOs in the tracking
result, which would not happen in real world situations.
Potential ways to resolve this include incorporating physics
simulators as described in Structure Preserved Registration
or adapting the self-intersection constraint introduced in
CDCPD2 [18], [20].
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