Active Learning of Model Preconditions for Model-Deviation Aware
Planning in Deformable Object Manipulation

Alex LaGrassa', Moonyoung Lee!, and Oliver Kroemer

Abstract—This paper presents an algorithm for actively
selecting trajectories in order to train an estimator that pre-
dicts model deviation of an inaccurate dynamics model. The
trained estimator is then used during test time to constrain
planning to regions of state-action space where the dynamics
model is predicted to be accurate with high probability. As
collecting state-action space data can be costly, we propose an
active learning algorithm to minimize data collection needed
to reliably train a model deviation estimator. Preliminary
results show improvements in both test performance, and in
the qualitative selection of trajectories selected by the active
learning approaches. We further show experiments that analyze
the effect of using different acquisition functions on trajectories
chosen during training, and on the test performance.

I. INTRODUCTION

Although it is possible to leverage the long-horizon rea-
soning of model-based planning with deformable objects,
accurate general-purpose modeling of deformable objects is
difficult and computationally expensive [1, 9]. Furthermore,
the resulting models are often inaccurate and require large
amounts of data to train. This makes it hard to plan and ro-
bustly execute robot motions that involve deformable objects
in settings where data is expensive.

In this paper, we address the problem of model-based
planning with inaccurate deformable object models by ac-
tively collecting data to predict model error of a special-
purpose deformable object model, which can then be used
in planning to obtain more robust plans. Previous work has
shown that a model deviation estimator (MDE) can predict
model deviation, which can then be used as a constraint
in planning as a model precondition: a region of state-
action space where a dynamics model is sufficiently accurate
for planning [8, 5]. MDEs can identify and reason about
patterns in which state-action pairs where the model tends to
deviate from real-world dynamics, but require ground-truth
data which can be expensive.

Active learning can enable sample-efficient learning of
expensive-to-compute functions [12]. In this work, we use
the MDE to perform active learning to minimize data col-
lection in the real world. Collecting and defining a good
MDE dataset is challenging because the dataset needs to
contain enough trajectories to find plans that are useful for
tasks while being able to reject plans that would lead to
undesirable results. Furthermore, when actively collecting
data for a trajectory, model error in the earlier states can
lead the robot to be unable to gather data from the later
states due to the sequential nature of the problem. We show

TRobotics Institute, Carnegie Mellon University

1

High Deviation Trajectory + s

Water Bucket

Plant

Trajectory Model Deviation

Low Deviation Trajectory

% 4 2 6 @ 4

Fig. 1: Sketch of active learning approach over trajectories. The algorithm selects a
trajectory that minimizes o (7), which is a function of estimated model deviation on
the trajectory. In this example, a generally low deviation trajectory (bottom) scores
higher than the high deviation trajectory (top), so that trajectory would be executed to
collect data to estimate model deviation.

the intuition for the desired behaviour of our active learning
approach over trajectories in Figure 1.

In this paper, we present an approach for active learning
of a model deviation estimator to improve the accuracy
and robustness of plans for a plant watering task. We then
examine results analyzing the effect of several different
acquisition functions on trajectories chosen during training,
and reliability of the plans executed at test time.

II. PROBLEM FORMULATION

The goal of this work is to select a dataset D of (s, a, s)
tuples in order to train an MDE that uses D. We assume
we are given a distribution of planning problems that can be
sampled from in the form of start states and goal states,
a pre-existing dynamics model f (s,a) that can compute
the next state s’, and a planner that uses f(s,a) with the
corresponding MDE to find plans to the goal. Plans are
trajectories of high-level parameterized actions ag.r—; and
predicted states sg.r such that sy is a goal state. Each
trajectory is denoted by 7. The agent may use the planner
during training time and sample from the same distribution
of planning problems that will be seen at test time, but not the
same problems. We assume that the state needs to be fully
observable to extract meaningful distances between s’ and
f (s), and correspondingly a distance function of the form
d(si, s;) that returns a scalar value representing the distance
between two states.

III. RELATED WORK

We build on work for predicting and avoiding model
error [7, 8], which has also been done using probabilistic
models [10, 4] as a form of model preconditions, as well as
work in skill precondition learning. Some work has used GPs
to define skill preconditions because of their data-efficiency
and meaningful uncertainty quantification [11, 12, 13]. The
most closely related work to active model precondition
learning is active skill precondition learning [12], which also
uses GPs to determine which action parameters to sample
for successfully executed skills given a context variable that
represents the state. In contrast, this work is for a model
precondition, which is more specific than a skill precondition
though related in many cases. Furthermore, [12] does not
account for the sequential nature of trajectories in active
learning: the most informative point may not be reached with
the current controller and model if the model is inaccurate.
[3] addresses the sequential dependence of selecting points
that require following a controller to reach by separately
optimizing information gain to select a point and steering
towards it. The results in [2] show that optimizing over
trajectories instead of single points leads to more efficient
exploration and better trajectories, which we do as well to
learn MDE:s instead of the dynamics.

IV. APPROACH

We first illustrate the intuition for our approach. We then
describe our proposed algorithm that uses knowledge of
where and how much the model is predicted to deviate to
determine how to prioritize data collection.

Intuitively, our approach efficiently collects data to define
a model precondition. Data is sampled efficiently by priori-
tizing coverage of diverse dynamics so that the planner can
consistently compute plans within the model precondition.
We select trajectories that are relevant for planning by using
trajectories that reach a goal while maintaining a balance
between success and exploration through a utility function
that prioritizes low error and an exploration bonus based on
the predicted variance of d(s,a).

We estimate the model precondition using a model de-
Viatiog estimator(MDE), which predicts a distgibution for
d(s', f(s,a)) given (s,a) that we denote as d(s,a). The
distribution is a Gaussian distribution with mean p(s,a) and
o(s,a). The model precondition of a model f is defined as:
pre(f) = {(s,a)|P(d(s,a) > dmax) < 8} for some small
. The constraint is defined as u(s,a) + Bo(s,a) < dmax
where (3 is set based on J to tune the risk tolerance.

We now describe our algorithm for actively learning
MDEs. The algorithm works as follows and is illustrated in
Figure 2. Starting in the upper left corner, the agent samples
a planning problem, generates a set of diverse candidate
trajectories, and then finds a trajectory that minimizes a
utility function (7). It then executes that trajectory in the
real world and saves the observed (s,a,s’) tuples. One a
batch of M trajectories has been executed, the robot updates
the MDE using the new data.

T2 [Sp 811 gl

Sample Generate N trajectories Compute
start state, goal T[S, 8115 g1] 7% = min, a(7)
(s,2) > Observed
d(s”, f(s.a)) [s1:1 gr1]
Update Generate Execute 7*
MDE MDE dataset in test environment

Fig. 2: Overview of our method. At each iteration, a planning problem is sampled,
and then a trajectory that minimizes the acquisition function is executed. After every
M trajectories, the agent updates the MDE.

At test time, the robot uses the final model deviation
estimator trained on data D. It finds plans predicted to be
robust by rejecting transitions that are predicted to have a
deviation higher than a threshold 6,,,x that the system can
correct in closed loop-control.

A. Learning MDEs

We use a standard Gaussian Process (GP) regression
model with the addition of a heteroscedastic noise model.
Data collected for the MDE is in the form of (s, a, s’) tuples
from executing action « in the target environment (expected
to be the real world) from state s, and then observing s’
The labels for the MDE dataset are the distances between s’
and the predicted next state f: d(f(s,a),s’). For numerical
reasons, we normalize the labels to be zero-mean and unit-
variance by subtracting the mean of d(f(s,a),s’), - and
dividing by the standard deviation of the data, o,. To
maintain a zero-mean prior in the space of d, we fix the
prior mean of the GP to —£=. The kernel is a Matern
kernel and all hyperparameters are optimized for the z-score
normalized data. Input features remain unscaled. Whereas a
homoscedastic GP was sufficient in [4], we needed to use a
heteroscedastic noise model for this more complex problem.

B. Active learning

In active learning, the robot samples a set of /N candidate
trajectories using RRT, and then selects the one that mini-
mizes a(7). The value for a(7) depends on the values for
each individual (s, a) pair along the trajectory, which is of the
form si.7,a1.7—1. The acquisition function we use for each
individual ¢ is denoted as oy (s, at). We define oy (s, a) in a
form inspired from Lower Confidence Bound: pu(z) — co(x)
where ¢ (which can be negative) is a scaling factor that
controls the degree to which exploration is encouraged. We
propose a form of our acquisition function as follows:

min, maxtdm(ﬂ'ytu(zf(s,a)) + ca(cz(s,a))) (D

We fix dp,ax for all of training but allow a broader training
model precondition by increasing [as the robot accumulates
more data.

a) Training
environment

¢) Real-world test
environment

b) Simulator test
environment

Fig. 3: Experimental setup. a) The simulated environment where data is collected to
train an initial model. There are only two containers for pouring, and simulation is
inexpensive. b) a simulated environment for evaluation with a plant that we use for
more extensive evaluation c) the real-world environment

V. EXPERIMENTS

We conduct experiments in a simulated water pouring
environment [6] using a dynamics model trained in less
expensive simulated environment without a plant, shown
along with its real-world equivalent in Figure 3.

The initial poses of the target box is fixed but the initial
pose of the controlled box is randomized across a wide
range, and the plant pose is varied slightly. The task is to
pour a desired amount of water into the target box without
spilling more than two percent. The state space for planning
is the poses and volumes of both boxes. We run each
experiment with 4 random seeds for 20 iterations containing
10 trajectories in each iteration. 9 candidate trajectories are
generated for each of the active methods. During training,
we use dmax = 0.07 with 5 = —2 for iterations below 10,
and 5 = 1 otherwise as a constraint during planning.

The baselines we compare against are Random Actions,
which samples a trajectory of length 6 using the action
sampler the planner uses, and Random Plan, which selects a
random trajectory that reaches the goal. The purpose of RP is
to test the effect of active learning using the MDE over only
using data relevant to planning. To compare different ways of
using the MDE during planning, we compare three different
values of c. The higher c is, the higher the exploration bonus.
Active Cautious (AC) uses ¢ = —0.1, Active Balanced (AB)
uses ¢ = 0.1, and Active Mean Only tests the impact of only
using the mean by setting ¢ = 0.

Trajectory Diversity and Dataset Analysis: We first
analyzed the types of trajectories collected during online
learning with various acquisition functions. We observe the
most significant difference in the fraction of pours that
successfully poured into the target container without spilling
where active learning methods tend to achieve more success-
ful pours below the plant leaves with less data(Figure 4a).
The ratios of pours above the plant are comparable across
all methods including Active Cautious, indicating that the
negative incentive to explore is not affecting trajectory types
significantly. Very few samples get stuck for all methods. We
hypothesize that the low effect of the exploration bonus is
due to the low prevalence of low-mean, high-variance points
when sampling randomly.

End-to-end Performance Metrics: We evaluated the end
performance of the proposed approach by monitoring the
success rate in reaching the goal at test time by using the
MDE learned on datasets acquired from each algorithm to

(b) unsuccessfully pour above

(a) successfully pour above the plant (c) stuck in plant
Fig. 4: Ratio of types of trajectories observed during training (examples of each shown

above)

Success t

1.0

°
®

°
>

Success Rate

o
ks

Active Balanced
~—— Active Cautious
—— Active Mean Only
—— Random Actions
~—— Random Plan
Shaded 95% c.i.

°
N

0.0

01 2 3 4 5 6

7 10 11 12 13 14 15 16 17 18 19
Online Learning lteration

Fig. 5: Learning curves of the success rate of finding and executing plants to the goal
at test time. The shaded region is the 95% confidence interval.

form a model precondition defined using dy,,x = 0.07 and
(=2. For each iteration, the planner with MDEs learned using
each method are evaluated for 30 randomly sampled planning
problems. Results are shown in Figure 5.

We observe a large data efficiency improvement when us-
ing an active learning algorithm over the baselines. Iterations
1 and 2 may inconclusively indicate a small benefit with very
low data with higher c. The performance for all algorithms
that sample trajectories to the goal converges to finding plans
by iteration 13. Although the success rate in finding plans
is significantly lower for Random Actionsthan for Random
Plan, we find a smaller gap in success reaching the goal,
which indicates potentially more accurate MDEs when not
constraining data to be from plans.

VI. CONCLUSIONS

Overall, our approach provides a promising solution for
actively learning model deviation estimators to improve the
accuracy and robustness of robot motion planning, particu-
larly in the context of deformable object manipulation. Pre-
liminary results show that our algorithm for active learning
can use the MDE to identify informative samples efficiently
and effectively, but too small of an effect in how the variance
estimate is used to conclude anything about how it affects
exploration. Our most immediate future goals are to evaluate
the impact on acquisition functions on the accuracy of model
preconditions. To more thoroughly evaluate the accuracy
of the learned model preconditions, we will evaluate how
well-calibrated the MDE predictions are on a set of test
trajectories. We have also been validating that the algorithm
works on the more challenging real-robot environment shown
in Figure 3.

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

REFERENCES

Christopher J Bates, Ilker Yildirim, Joshua B Tenenbaum,
and Peter Battaglia. “Modeling human intuitions about lig-
uid flow with particle-based simulation”. In: PLoS compu-
tational biology 15.7 (2019), e1007210.

Mona Buisson-Fenet, Friedrich Solowjow, and Sebastian
Trimpe. “Actively learning gaussian process dynamics”. In:
Learning for dynamics and control. PMLR. 2020, pp. 5-15.
Alexandre Capone, Gerrit Noske, Jonas Umlauft, Thomas
Beckers, Armin Lederer, and Sandra Hirche. “Localized
active learning of Gaussian process state space models”.
In: Learning for Dynamics and Control. PMLR. 2020,
pp. 490-499.

Alex LaGrassa, Steven Lee, and Oliver Kroemer. “Learning
Skills to Patch Plans Based on Inaccurate Models”. In:
IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS 2020, Las Vegas, NV, USA, October 24,
2020 - January 24, 2021. IEEE, 2020, pp. 9441-9448.
Alex Licari LaGrassa and Oliver Kroemer. “Learning Model
Preconditions for Planning with Multiple Models”. In: Con-
ference on Robot Learning. PMLR. 2021, pp. 491-500.
Xingyu Lin, Yufei Wang, Jake Olkin, and David Held.
“SoftGym: Benchmarking Deep Reinforcement Learning for
Deformable Object Manipulation”. In: Conference on Robot
Learning. PMLR. 2021, pp. 432-448.

Dale McConachie, Thomas Power, Peter Mitrano, and
Dmitry Berenson. “Learning When to Trust a Dynamics
Model for Planning in Reduced State Spaces”. In: IEEE
Robotics and Automation Letters (2020).

Peter Mitrano, Dale M°Conachie, and Dmitry Berenson.
“Learning Where to Trust Unreliable Models in an Un-
structured World for Deformable Object Manipulation”. In:
Science Robotics (2021).

(9]

(10]

(11]

[12]

[13]

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez,
and Peter Battaglia. “Learning Mesh-Based Simulation with
Graph Networks”. In: International Conference on Learning
Representations. 2020.

Thomas Power and Dmitry Berenson. “Keep It Simple:
Data-Efficient Learning for Controlling Complex Systems
With Simple Models”. In: IEEE Robotics and Automation
Letters 6.2 (2021), pp. 1184-1191.

Rin Takano, Hiroyuki Oyama, and Yuki Taya. “Robot Skill
Learning with Identification of Preconditions and Postcondi-
tions via Level Set Estimation”. In: 2022 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS).
2022, pp. 10943-10950. pol: 10.1109/IR0OS47612.
2022.9981933.

Zi Wang, Caelan Reed Garrett, Leslie Pack Kaelbling, and
Tomds Lozano-Pérez. “Active Model Learning and Diverse
Action Sampling for Task and Motion Planning”. In: 2018
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). ISSN: 2153-0866. Oct. 2018, pp. 4107—
4114. pDOI: 10.1109/IR0S.2018.8594027.

Zi Wang, Caelan Reed Garrett, Leslie Pack Kaelbling,
and Tomds Lozano-Pérez. “Learning compositional models
of robot skills for task and motion planning”. In: The
International Journal of Robotics Research 40.6-7 (2021),
pp.- 866-894.

