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Abstract—We present a sampling-based approach and initial
experiments to reasoning about the manipulation of both rigid
and a simplified class of deformable objects, modeled as ar-
ticulated rigid bodies with gravitational and elastic potential
energy in 3D. We extend earlier work generalizing the notion
of caging to include energy function constraints to allow for
a quasi-static analysis and the inclusion of elastic potential
energy of deformable objects. While past works on caging have
predominantly focused on provably correct algorithms applicable
to restricted simple classes of rigid objects such as polygons in
2D or simple meshes in 3D, our approach only provides upper
bounds to escape energies, but in return allows for the analysis
of such soft fixtures in much higher-dimensional configuration
spaces. In this workshop contribution, we present initial demon-
strations of simulation scenarios indicating that our approach
can be applied to the analysis of escape energy for quasi-static
manipulation scenarios involving rigid and articulated objects.
Simulation results indicate that a variation of a BIT*-based
motion planner outperforms an incremental search-based RRT
planner as a baseline for this application in particular.

Index Terms—robotic manipulation, caging, sampling-based
motion planning, potential energy

I. INTRODUCTION AND RELATED WORK

The task of restraining an object, which is also referred
to as fixturing, is one of the key functions of robotic grasp-
ing [1] and a key step towards robust dexterous manipula-
tion. Enveloping grasps [2] effectively constrain objects by
wrapping the fingers and palm around them, while fingertip
grasps enable dexterous manipulation of objects with distal
phalanges. While classical grasping approaches such as form
and force closure [3] focus on the analysis of point-contacts
with the goal of fully controlling the pose of a grasped object,
these approaches, however, might suffer from grasp instability
issues due to noise in perception and susceptibility to external
disturbances. Caging provides an alternative approach to fix-
turing, where the object is not necessarily fully immobilized.
The notion of caging was introduced by Kuperberg [4] as
the problem of preventing a polygon from escaping arbitrarily
far away using a set of fixed point-obstacles. More precisely,
an object configuration is caged if its path-component in
collision-free configuration space is bounded. Rimon et al. [5],
[6] then applied the caging concept in the context of robotic
grasping and introduced a theory for caging-based grasping of
planar objects [7], [8] and presented methods of finding two-
finger cage formations of planar polygons or 3D polyhedra
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Fig. 1: Quasi-static soft fixture analysis of two simulated dynamic
scenes of a rigid ring under gravity (top) and a deformable fish model
falling into a bowl (bottom). We display total potential energy (green),
gravitational potential energy (purple), elastic potential energy (blue),
and estimated required soft fixture escape energy (red) for each frame.
Escape energy is estimated using 5 independent runs of a 2-min
execution of the BIT*-based escape energy approximation.

based on contact-space search. Rodriguez et al. [9] showed
that caging grasps may be regarded as a viable means of
achieving immobilizing grasps through finger closure. Based
on the analysis of topological and geometric features, [10],
[11] have applied caging grasps to certain classes of 3D
rigid and deformable objects, but the proposed methods are
only applicable to objects with specific features, such as
holes or double forks. Energy-bounded caging of 2D objects
was introduced by Mahler et al. [12], [13] and introduced
additional constraints defined in terms of potential energy to
the caging paradigm and relied on a cell-based decomposition
of configuration space and the use of persistent homology.

In this work, we present initial progress on further extending
the notion of caging to what we refer to as a soft fixture,
where an object is constrained to a bounded path-component
within a sublevel set of a suitable constraint function. We in
particular explore constraints imposed by the sublevel set of a
function defined in terms of potential energy for this purpose.
Unlike computationally expensive volumetric approximations
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of configuration space such as 3D rigid body caging using
the methods of [14], which currently cannot be applied in
higher-dimensional configuration spaces or dynamic scenarios,
we utilize a sampling-based approach that we show is appli-
cable even to deformable objects approximately modeled as
articulated objects. Three initial demonstrations of such soft-
fixtures and their quasi-static analysis are implemented in our
simulation experiments in particular1.

II. METHODOLOGY

Articulated Objects with Gravitational and Elastic Energy:
We denote by C ⊂ SE(3) × Rnj the configuration space of
an object O ⊂ R3 in 3D with nl = nj + 1 serial links
connected by revolute joints (with each angle constrained to
[−a, a], with a < π and a special case of nj = 0 for rigid
objects). We denote an element ξ ∈ C by ξ = (r, q,α), where
r, q are the position and orientation (a unit quaternion) of
the center of mass of the object’s base link respectively, and
α ∈ [−a, a]nj ⊂ Rnj is a vector of revolute joint angles. The
collision space S indicates the collection of configurations
for which O penetrates at least one of the rigid obstacles
{J1, ...,Jno} placed in the workspace. The free configuration
space is given by F = C −S . We assume that torsion springs
are attached at each of the revolute joints. Therefore, joint
configurations other than α = 0 exhibit non-zero elastic
potential energy. Combining this elastic potential energy [15]
with the standard gravitational potential energy and defining
points in collision space to have infinite energy, we consider
the following energy function E : C → R ∪ {∞}:

E(ξ) =

{∑nl

i=1 migzi(ξ) +
∑nj

h=1
1
2khα

2
h, if ξ ∈ F

∞ if ξ ∈ S

Here, g denotes the gravitational acceleration constant, zi(ξ)
the height of the center of mass of the i’th link in the
world coordinates (gravity in −z direction), kh the stiffness
coefficient of the h’th joint and αh the h’th joint angle.

Caging and Soft Fixtures: For any continuous path p :
[0, 1] → F , we define V (p) = maxt∈[0,1] E(p(t)) to be the
maximal potential energy encountered along p. We consider
the object O in configuration ξs ∈ F to be in a soft fixture
configuration with respect to E if, for some u ≥ 0, ξs lies in
a bounded path component inside the sublevel set:

U(ξs, u) = {ξ ∈ C : E(ξ) ≤ E(ξs) + u}

We call the supremum over all such u ≥ 0 the escape energy
of the fixture. This discussion is in essence a reformulation of
the notion of an energy-bounded cage defined in 2D in [12],
[13] to general energy functions and expresses the notion that
the initial configuration ξs is constrained to a bounded path
component subject to not raising potential energy by more than
a certain threshold. With respect to our definition of energy
function above, a soft fixture with infinite escape energy in
particular corresponds to the classical concept of a cage, where
ξs lies in a bounded path component of F .

1A video is available here: https://youtu.be/tnYr7MSPMTw

Estimation of Escape Energy Upper Bounds: Note that as
long as the object O is in a configuration ξg that is sufficiently
far away from obstacles there always exist trivial trajectories
that escape arbitrarily far away from the ξg without ever
raising potential energy. E.g. by moving a finite amount away
from potential obstacles in the plane orthogonal to the gravity
direction and then following the direction of gravity as far
as desired. Our strategy for estimating soft fixture escape
energy is to search for escape paths p ⊂ U(ξs, u) starting
at an initial configuration ξs and connecting to some goal
configuration ξg with lower energy E(ξg) < E(ξs) and
sufficiently far away from obstacles to demonstrate an escape
path at a given threshold u, thus providing an upper bound to
escape energy. As a baseline, we can run an RRT [16] planner
constrained to U(ξs, u) starting at ξs and attempt to reach a
goal configuration ξg sufficiently far away from obstacles. In
experiments, we consider a ball B containing the obstacles in
workspace and consider a path in U(ξs, u) to have escaped
sufficiently far from an initial configuration ξs with position
component rs ∈ B if a configuration ξg = (rg, qg,αg)
is reached with position rg corresponding to the “bottom”
lowest position of that ball in gravity direction, an arbitrary
rotation qg and an equilibrium αg = 0, to demonstrate that
ξs ∈ U(ξs, u) does not lie in a bounded path component.

To approximate escape energy upper bounds of ξg , we
tested a very simple incremental search approach – in spirit
similar to the bisection method of [17], who applied this to a
2D partial caging. In each iteration i, we run an RRT motion
planner with a finite time budget to search for a trajectory
fully contained in U(ξs, ui), starting at ξs and connecting
to ξg , starting with u0 ≫ 0. We then retrieve a feasible
path pi if it is found which establishes an upper bound
ui+1 = max{V (pi) − E(ξs), 0} for escape energy and the
search restarts in the smaller sublevel set U(ξ, ui+1) and any
found path successively attempts to establish a tighter upper
bound for escape energy. The loop terminates when ui ≈ 0,
or a maximum iteration limit or a time limit is reached for the
execution of the motion planner, thus establishing an upper
bound for escape energy.

Inspired by Batch Informed Trees (BIT*) [18], a plan-
ning algorithm that balances the benefits of graph-search and
sampling-based techniques and efficiently approximates the
high dimensional space, we furthermore considered a search
for minimum escape energy trajectories using BIT*. The
search in BIT* is prioritized by potential solution quality, as
in A*, and is asymptotically optimal, as in RRT* [19]. We
propose a modification of BIT* by introducing a configuration-
cost function that aims to prioritize states with lower potential
energy. This results in a type of cost-space path planning
that computes low-cost paths with respect to a cost function
defined on the path space p [20]. We define the state cost
function c(ξn) of a new sample ξn ∈ F in a batch if it
connects to a current vertex ξi ∈ F already in the graph
as c(ξn) = max{c(ξi), E(ξn)−E(ξs)} with c(ξs) = 0. This
cost function is intended to steer the exploration to expand new
vertices and rewire edges according to their potential energy-
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based cost-to-come V (p) (p(0) = ξs, p(1) = ξn) with the aim
of pruning branches of the search tree that are unlikely to lead
to an escape path p with minimal V (p).

III. EVALUATION

We present an evaluation of the proposed BIT*-based ap-
proach relative to the incremental search-based baseline for
quasi-static soft fixture analysis. Two dynamic scenarios are
presented in Figure 1: (1) a ring caught by a fish hook, (2)
a fish modeled as an articulated object with elastic potential
energy falling in a bowl. A third scenario of a starfish (modeled
as a rigid object) captured by a Robotiq 3-finger gripper [21]
can be found in the supplementary video. We used the Open
Motion Planning Library (OMPL) [22] with its Python binding
for the implementation of the motion planners and Pybullet
[23] is used for collision detection and forward simulation of
bodies under gravity. All experiments are performed on an
Intel Core i9-12900H up to 5.0GHz processor with 14 cores.
On average, approximately 1000 samples are processed per
second by the BIT*-based planner.

Qualitative Evaluation of Approximated Escape Energy:
The evaluation scenarios present examples of dynamic soft
fixtures in the course of hooking an object, catching it with a
bowl and a transition from soft fixture to caging for the starfish
example. We simulate the objects’ trajectories under gravity
and potential energy using Pybullet (see the video and Fig.1).
In Pybullet, the objects freely fall under gravity and are caught
by fixed obstacles (bowl, hook, gripper) afterwards. The object
configurations ξi (i = 0, 1, ...) for each frame are recorded in
this process and we analyze each such configuration in a quasi-
static manner using our BIT*-based approach to approximate
the required escape energy – kinetic energy is ignored in
the analysis, but present in the Pybullet simulation. We run
5 independent runs of a 2-min execution of the BIT*-based
escape energy approximation for this purpose.

In the ring-hook example (Figure 1 top), a rigid ring with
1 N gravitational force falls (subfigure A) and is caught by
the fixed fish hook (B). We observe that its escape energy
is initially zero as a sidewards translation and ring rotation
around the center of mass provides an escape path that does
not raise potential energy in the initial frames. After that, it
enters a soft fixture (e.g. energy-bounded cage under gravity
here) with estimated required escape energy reaching about 1
J as the hook’s center of gravity falls deep below the tip of
the hook. As the ring is suspended from the hook, it swings
back and forth (C, D) due to kinetic energy present in the
simulation - this results in an oscillation in our quasi-static
escape energy analysis with a local minimum around C and
local maximum around D as energy is stored in kinetic and
potential energy during this swinging which is coming to rest
over time resulting in a stabilizing non-zero escape energy.

In the previous example, we consider rigid objects such
as the hook as a special case of articulated objects with
zero elastic potential energy and nl = 1, nj = 0. Next, we
consider a simple articulated fish model approximation with
nl = 12, nj = 11, see the bottom part of Fig.1. As the
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Fig. 2: Comparison of the BIT* and baseline for approximating
escape energy for each frame of the ring-hook scenario (Figure 1 top)
shows near identical numerical values. The calculated escape energy
(as approximated using the BIT*-based and incremental planner) for
each frame i (left) is nearly identical for both methods. Convergence
of the algorithms over time (right) at frame 18 (corresponding to the
vertical dashed line, and a ring configuration ξ18 corresponding to
B in the top of Figure 1) indicates superior performance by BIT*.
Escape energy is estimated using 6 independent runs of a 3-min exe-
cution of the BIT*-based approach, and an 8-min incremental search
as the baseline. The horizontal dashed lines (red and green) indicate
the terminal approximation value of escape energy by running BIT*
and the baseline, respectively.

fish falls (A) it initially can be pulled arbitrarily far away
from its current configuration without raising potential energy,
however, it then hits the rim of the bowl and pivots around
the contact point (B). Around this time, the required escape
energy starts to rise and the elastic potential energy is non-
zero due to the deformation caused by the collision with the
rim and the pull of gravity. The fish slides down slowly (C, D)
along the inner wall of the bowl, and its curvature and elastic
potential energy are constrained by the curvature of the bowl.
We also observe that a configuration with maximum energy
along an optimal escape path appears to lie in the vicinity of
(1) the tip of the fish hook with the ring dangling from it,
and (2) the rim of the bowl with the fish body slightly bent
downward respectively.

Accuracy and Efficiency Compared to Baseline: We empiri-
cally verify the accuracy and efficiency of our proposed BIT*-
based approach in Figure 2. While BIT* appears to result in
a very similar accuracy as compared to the baseline over 100
frames, we observe improved convergence of BIT* as shown
in the left part of that figure for frame 18.

IV. CONCLUSION

We have demonstrated escape energy approximation of soft
fixtures with complex gravitational and elastic potential energy
constraints can in principle be studied using the proposed
methods, but further investigation is required and these meth-
ods still need to be validated in real-world experimentation.
We believe the initial results presented in this workshop
contribution provide a starting point for discussion and further
experimental validation of these ideas that we intend to submit
to an upcoming conference.
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