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Abstract— Accurately and robustly estimating the state of
deformable linear objects (DLOs) is crucial for DLO manipu-
lation and other applications. This paper focuses on learning
to robustly estimate the states of DLOs from single-frame
point clouds in the presence of occlusions using a data-driven
method. We propose a novel two-branch network architecture
to exploit global and local information of input point cloud
respectively and design a fusion module to effectively leverage
the advantages of both branches. Simulation and real-world
experimental results demonstrate that our method can generate
globally smooth and locally precise DLO state estimation results
even with heavily occluded point clouds.

I. INTRODUCTION

Robotic manipulation of deformable linear objects
(DLOs), such as ropes and wires, has a wide variety of appli-
cations [1], [2]. However, the infinite dimensional state space,
frequent occlusions and noises make it very challenging to
estimate the DLO state accurately. Commonly used DLO
state representations include Fourier-based parameterization
[3], implicit latent descriptors [4], [5], a chain of nodes [6]–
[9], etc. Among these methods, representing a DLO as a
chain of uniform 3-D nodes (see Fig. 1) is general in various
manipulation tasks and will be adopted in this work.

A complete processing stream to estimate the DLO state
can be roughly divided into three procedures: segmentation,
detection, and tracking. With raw RGB input, some works
[10]–[13] focus on how to obtain pixel-level DLO masks
using traditional image processing or data-driven methods.
As for detection, this step aims at estimating the positions of
nodes along the DLO in one frame with the cleaned sensory
data as input [14]–[16]. As for tracking, various works have
also been proposed to track the correspondence of point
cloud across video frames in the presence of occlusions and
self-intersections [17]–[23]. However, these pure tracking-
based methods rely on an accurate initial state which requires
manual setting or specific initial conditions. Besides, there
are few effective ways to rectify the accumulated drift errors
or re-initialize for tracking failure.

In this paper, we focus on estimating a sequence of ordered
and uniformly distributed nodes from single-frame point
cloud occlusion-robustly to represent the state of DLO, as
shown in Fig. 1. The challenges of this task are as follows:
1) there are few distinguishable features in the point cloud
of DLOs; 2) occlusions and noises are common in the
environment; 3) generalization ability for different DLOs
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Fig. 1. Illustration of our task: 3-D occlusion-robust DLO state estimation
from a single-frame point cloud. Red points are the unordered incomplete
point cloud of the occluded rope and blue connected dots represent our
estimated ordered node sequence as its current state.

is required. To deal with challenges above, we propose a
novel two-branch network architecture to leverage both the
global geometry information for guaranteeing smooth and
occlusion-robust shape, and local geometry information for
precise estimations. To the best of our knowledge, we are
the first to realize accurate and robust 3-D state estimation of
DLOs from single-frame point cloud input even with heavy
occlusions. The whole framework is trained on synthetic
dataset generated in simulation without collecting real-world
data. Experiments suggest our method achieves high perfor-
mance on occlusion-robust state estimation of DLOs and can
be directly applied in real-world scenarios.

II. METHOD

We represent the DLO state as a sequence of M nodes
uniformly distributed and the problem is to estimate the
coordinates of the nodes Y ∈ RM×3 from the input point
cloud X ∈ RN×3. As shown in Fig. 2, our proposed method
contains two branches: an End-to-End Regression branch and
a Point-to-Point Voting branch, which focuses on the global
and the local geometry information, respectively. Then, a
deformable registration module is designed to leverage the
advantages of both branches and output the final estimations.

A. End-to-End Regression

The most straightforward approach is to train an end-
to-end network with the point cloud X as input and the
node sequence Y as output. We exploit a PointNet++ [24]
encoder denoted as F (·) to extract deep latent features
F (X) ∈ RN×Cout . A max pooling layer is then applied to
get the global feature which is irrelevant to the input point
order and a fully-connected layer FC1 finally predicts the
node sequence. The whole regression network is defined as
Y pred
reg = FC1(MaxPool(F (X))).
With the ground-truth node coordinates Y gt, the training

loss function for each sample is

Lreg = ∥Y pred
reg − Y gt∥2. (1)
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Fig. 2. Overview of the proposed method for occlusion-robustly estimating the 3-D states of DLOs. The input point cloud which might be fragmented
due to occlusions is first fed into a PointNet++ encoder and the extracted features are then processed by two parallel branches: End-to-End Regression and
Point-to-Point Voting. The estimation results of these two branches are finally fused with a fusion module to obtain the final output node sequence.

It is experimentally found that such a network can ensure
that the estimated DLO shapes are smooth even with heavily
occluded point cloud input. However, the predictions are
often slightly different from the actual states such that they
are not sufficiently accurate for applications (see Fig. 5).

B. Point-to-Point Voting

To make up for the shortcomings of the end-to-end regres-
sion method, we design a point-to-point voting framework to
utilize local geometry information, which is inspired by early
works [25], [26]. This method first defines a heatmap value
Hij for the distance from xi to yj and a unit offset vector
Uij for the direction. Given a neighborhood radius r, the
ground-truth heatmap value Hgt

ij is defined as

Hgt
ij =

{
1− ∥xi − yj∥/r , ∥xi − yj∥ < r,

0 , ∥xi − yj∥ ≥ r,
(2)

and the ground-truth unit offset vector Ugt
ij is defined as

Ugt
ij =

{
(yj − xi)/∥xi − yj∥ , ∥xi − yj∥ < r,

0 , ∥xi − yj∥ ≥ r,
(3)

We then regress the point-wise heatmap Hpred and offset
vector Upred from the feature F (X) using point-wise fully-
connected layers. The training loss for the point-to-point
voting method is

Lvot =
1

N

N∑
i=1

M∑
j=1

[
(Hpred

ij −Hgt
ij )

2 + ∥Upred
ij −Ugt

ij ∥
2
]
.

(4)
The overall training loss for the whole network can be
formulated as: Ltot = Lreg+αLvot, where α is a pre-defined
coefficient. As for the inference, the point-wise estimation
for node yj from input point xi is obtained as ypred,i

j =

r (1−Hpred
ij )Upred

ij + xi.

We also use the heatmap value Hpred
ij as the confidence of

the prediction ypred,i
j and only select input points with the

highest K headmap value for the jth node to calculate the
final estimation as

ypred
j =

(∑
i∈K

Hpred
ij ypred,i

j

)
/
∑
i∈K

Hpred
ij , (5)

where the indexes of the K chosen points form the set K.

Nodes by regression

Nodes by voting

Final estimated nodes by fusion

Ground-truth DLO

Correspondence between 

regression and voting nodes

Transforming regression nodes 

to get final estimation

Occlusion

Non-rigid spatial 

transformation

Fig. 3. Illustration of the fusion module. We first identify and exclude the
occluded parts estimated by voting. Then, a non-rigid spatial transformation
is estimated and the total sequence estimated by regression is transformed
to get the final node sequence (purple points) using this transformation.

Experiment results show that the point-to-point voting
scheme can produce precise state estimations. However, if
there are no enough input points in the local neighborhood
because of occlusions, the prediction of the occluded part
will be significantly inaccurate (also shown in Fig. 5).

C. Fusion of the Two Branches

To leverage the advantages of both two branches and
achieve occlusion-robust state estimations, we further in-
troduce a non-rigid registration-based fusion module. We
aim to estimate a non-rigid transformation from the smooth
but imprecise regression results to the accurate unoccluded
voting results, as shown in Fig. 3. Details of each step are
described as follows:

1) Select the unoccluded node subset: Firstly, we define
the visible possibility pj = maxi H

pred
ij , and regard the

nodes whose pj is greater than a pre-defined threshold
T ∈ [0, 1] as unoccluded parts. We denote the subsets of
unoccluded regression and voting results for the following
non-rigid registration (simplified as nrr) as Y nrr

reg and Y nrr
vot .

2) Estimate the non-rigid transformation: We utilize a
modified Coherent Point Drift (CPD) algorithm [27] to
estimate the non-rigid transformation with known correspon-
dences. The classical CPD formulates registration as a GMM
problem and ensures the coherent motion by representing
the non-linear spatial transformation as T (Y nrr

reg ) = Y nrr
reg +

G(Y nrr
reg )W , where G(·)W represents the displacement

function as a Gaussian Radius Basis Function Network.
For us, the correspondence of our source Y nrr

reg and target
Y nrr
vot has been given by the order of nodes in the sequence.

Thus, there is no need to execute the E-step and we can
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Fig. 4. State estimation results of three different real-world DLOs from occluded and fragmentary point clouds. The top row shows the raw RGB images
and the reprojection of the estimated node sequence (in red color); and the bottom row shows the raw point clouds of the DLOs (in black color) and the
3-D positions of the estimated node sequence (in red color). Each column refers to a shape, in which the top image is in the common camera frame and
the bottom point cloud is in a top-view frame to better illustrate the Z-axis shape.
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Fig. 5. Visualization of the regression, voting and fusion results of (a)
unoccluded point cloud and (b) occluded point cloud.

directly update σ2 and W iteratively. Following Eq. (22) and
Eq. (23) in [27], we can fix the correspondence probability
matrix as an identity matrix and solve W and σ2 using

(G(Y nrr
reg ) + λσ2I)W = Y nrr

vot − Y nrr
reg , (6)

σ2 =
1

D
(tr((Y nrr

vot )
TY nrr

vot )− 2tr((Y nrr
vot )

TT (Y nrr
reg ))

+ tr(T (Y nrr
reg )

TT (Y nrr
reg ))).

(7)

3) Transform the whole set of regression results: Finally,
we apply the estimated non-rigid transformation to the whole
regression node sequence, where the displacement function
is given by the Gaussian Radius Basis Function Network
and previously optimized weights W . The transformed re-
gression node sequence are our final fused state estimations:

Y pred
fus = T (Y pred

reg ) = Y pred
reg +G(Y pred

reg ,Y nrr
reg )W . (8)

III. RESULTS

A. Simulation Results

All the training data are generated in simulations for the
convenience of getting the ground-truth node positions and
our model can be trained on the synthetic data in an end-to-
end manner. Two visualized examples are shown in Fig. 5.
It can be seen that the regression results are robust against
occlusion but imprecise, while the voting results are accurate
outside occlusion but extremely unreliable for occluded parts.
However, our fusion method can accurately and robustly
estimate the DLO state in both unoccluded and occluded
scenarios.

Fig. 6. Applications in downstream DLO shape control task. The blue,
yellow, and green points represent the reprojected 3-D node positions,
selected control nodes and target positions, respectively.

B. Real-World Experiments

We choose three DLOs of different lengths and different
materials to examine the generalization ability of our method
in real-world applications. The two ends of DLOs are rigidly
grasped by dual robot arms and deformed to various complex
shapes. Results in Fig. 4 illustrates that our method can
be directly applied to estimate the real-world DLO state
with small sim-to-real gaps. Even in some cases with self-
intersection or occlusion by obstacles, our state estimations
are still smooth and precise enough.

We also integrate our method into the DLO shape control
task as the front-end perception module. As shown in Fig. 6,
a uniformly-distributed subset of estimated nodes (8 yellow
points) is chosen to be controlled to achieve the target
positions (corresponding green points). The controller is
based on our previous work [6] and our method can achieve
real-time performance on a GeForce RTX 2060 GPU. In the
presence of occlusions or self-intersections at both initial and
middle stage of the manipulation process, our method can
steadily output precise DLO states and finally achieve the
target positions, which cannot be realized by the existing
pure-tracking methods.

IV. CONCLUSIONS

In this work, we propose a learning-based method to
robustly estimate the 3-D states of DLOs from single-frame
point clouds even with heavy occlusions. We design a two-
branch architecture to utilize the global or local geometry
information respectively and fuse them to get the final
output. The simulation and real-world experimental results
demonstrate the effectiveness of our method.
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