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Abstract— Ultrasound is a cheap and popular imaging
method for localizing vessels in a variety of surgical inter-
ventions. Ultrasound-guided robots are increasingly being used
to automate vascular access. However, ultrasound being a
form of contact imaging, deforms soft tissue, especially vessels.
Therefore, for accurate manipulation of vasculature, robots
require some form of reasoning that can predict deformations in
3D. While deep learning methods could help, we lack enough 3D
training data. Capturing 3D deformation data is a challenging
task as ultrasound only provides 2D data in-plane and obtaining
3D deformation data from other forms of imaging such as
CT is expensive. To generate more data for training deep
learning-based models, we propose the use of realistic FEM
simulations with 3D models of vessels built from undeformed
2D tomographic images. In order to match our simulation to
our real-world 2D observations, we propose an optimization for
material properties by maximizing the IoU of the vessel area
from the simulation and the real-world ultrasound images. Post
optimization, in matching simulations of deformations to real-
world ultrasound observations, we observe the average IoU for
compressed vessels to be 0.72.

I. INTRODUCTION

The accurate estimation of deformation is an emerging
sub-field within medical robotics and is required for manip-
ulating deformable skin and vascular (vessel) tissue for a
variety of tasks. Vascular access through needle insertion is
necessary in many surgical interventions such as Resuscita-
tive Endovascular Balloon Occlusion of the Aorta (REBOA),
cathether placement etc. Most robots automating this step use
ultrasound to guide needle insertion [1] [2]. While ultrasound
imaging has several benefits such as high portability, zero
ionizing radiation, and low cost, it can be noisy and result
in deforming the subject. Ultrasound imaging requires the
application of a significant force to maintain contact between
the probe and the subject, and in some cases, improve
the quality of imaging. An undesirable effect is that the
applied force, deforms the elastic tissue and can cause vessel
collapses or lateral displacement termed rolling. While an in-
plane needle insertion into a vessel under a constant force is
feasible with ultrasound, insertions out of the the ultrasound
plane run the risk of missing the vessels as the localized
vessel centers might shift due to deformations. In such a
scenario, having an estimate of the 3D vessel deformation
can turn a blind insertion into an informed insertion.

Traditionally, simulators using the Finite Element Method
(FEM) have been used to estimate deformations of 3D struc-
tures under applied forces. Porting this method to concealed
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anatomy such as vessels comes with its own set of challenges
- 1. The material properties of the tissue are not known
exactly; 2. Tissue is typically non-homogeneous material;
3. The 3D shape of the entire vessel cannot be obtained
easily; 4. How do we ascertain that the simulation is realistic?
Additionally, FEM simulation, even with fast simulators
utilizing GPU compute, is time-consuming and cannot be
applied in real time for high resolutions.

Fig. 1. Left: Our robotic system; Right: The registered simulation setup.

Inference with neural networks can be much faster than
FEM simulation [3]. Networks that process 3D representa-
tions such as point clouds and meshes can be conditioned on
forces to predict deformed shapes [4], effectively mimicking
FEM simulation. While such networks may not learn the
underlying physics of deformation with the highest precision,
they have shown to produce realistic deformations. Few such
networks exist in the domain of medical data, perhaps due
to the difficulties in obtaining training data from concealed
anatomy and using 2D imaging to observe 3D deformations.

We present a method to utilize 2D tomographic medical
imaging for building and calibrating a simplified FEM simu-
lation of 3D vessel structures. This simulation mimics vessel
compression due to forces from an ultrasound probe. We
estimate the material properties in calibration by using an
optimization for the Young’s modulus and Poisson’s ratio.
This is achieved by maximizing the IoU area between the
deformed vessels observed in real-world ultrasound images
captured by a robot and vessel cross-section from the simu-
lated deformed model. We propose that our method can be
used to generate 3D training data for neural networks being
developed to predict deformations. The method is tested
on a 3D model of a blue-gel ultrasound phantom created
from a high resolution CT (Computed Tomography) scan.
We substitute ultrasound imaging with CT for obtaining the
initial undeformed shape of vessels. For incorporating real-
world data from porcine subjects, we use robot-captured



ultrasound images at very low forces for generating the 3D
model of the vessel/s. This generates a model with some
deformation but for the purposes of simulation, we assume
this to be the undeformed structure. Our robot setup and the
corresponding simulation scene are seen in Fig 1.

II. RELATED WORK

Force data collected from a multi-axial force sensor
mounted on the robotic manipulator, and tissue deformation
data collected from a stereo camera system are used for
estimating mechanical parameters of soft tissue in [5]. The
authors of [6] use RGB-D sensing to learn force values
in an ex-vivo set up with a da Vinci Surgical System for
brain tissue. In [7], a novel approach to simulate the soft-
body deformation of an observed object is introduced. The
approach tracks an object’s movement using an RGB-D
sensor and simulates its deformation iteratively. The method
could be applied to track skin deformation but since our
scope is vessels, RGB-D sensing cannot be applied.

Quite a few studies have explored simulating soft-tissue
deformations but few optimize simulations using medical
images. In [8], the authors propose a comprehensive pipeline
to create patient-specific biomechanical models and optimize
deformation predictions in FEM through iteratively updating
model parameters by maximizing image similarity between
FEM-predicted MR images and the experimentally acquired
MR images of a breast. To predict deformations in real-time,
in [9] a liver model with biomechanical properties similar to
real one is created using FEM and a data set of deformations
with different forces is generated. The mechanical behaviour
is simulated in real time by a LightGBM regression model
trained with the generated data set. Vessels are modeled and
deformed in real-time using a tensor-mass method in [10]
and the authors perform experiments for determining realism
but do not use medical imaging to quantify it and rely on
qualitative results. Other papers [11] [12] simulate vessel
deformations due to blood flow.

[3] proposes using deep neural networks to learn large
deformations occurring in ultrasound-guided breast biopsy
as FEM is not real-time. They train a U-Net architecture on
a relatively small amount of synthetic data generated in an of-
fline phase from FEM simulations of probe-induced deforma-
tions to provide accurate prediction of lesion displacement.
3D-PhysNet, proposed in [4], can predict three-dimensional
deformations in solids under applied forces by encoding the
physical properties of materials and applied forces in the
network, essentially learning the FEM simulation.

III. DATA

For building the 3D model of vessel/s, we utilize tomo-
graphic imaging to capture the concealed structure of vessels.
We show our deformation simulation and calibration on a
mesh model of the CAE blue-gel ultrasound phantom built
from a CT scan and a porcine femoral vessel built from
ultrasound images. Multiple ultrasound sweeps were carried
out with varying forces (2, 4, 6, 8 and 10 N) along a
predefined trajectory on the live-pig subject. For in-plane
comparisons, images from different sweeps were synced

using the pose of the ultrasound probe. The ultrasound data
was collected using a UR3e manipulator (Universal Robots)
with a Fukuda Denshi portable point-of-care ultrasound
scanner (POCUS) using a 5-12 MHz 2D linear transducer
and a six-axis force/torque sensor (ATI) mounted on the
end effector. The IACUC-approved porcine experiments were
done with the same robot setup in a controlled lab setting
under clinician supervision.

IV. METHODS

A. 3D Model Generation

Slices of the CT volume of the phantom are segmented
through pixel thresholding in 3DSlicer [13] for labeling ves-
sels. The vessel labels are manually rectified and propagated
through the length of the CT volume to obtain a hollow
triangular mesh. This mesh is uniformly downsampled with
Blender [14] to ensure vertices are uniformly distributed
with low distances between vertices. FEM simulations could
fail with meshes that have sparse vertices placed far apart.
This downsampled mesh is then converted to a volumetric
tetrahedral mesh using Gmsh [15], with the vessel region not
having any connectivity. The tetrahedral connectivity is only
for the region of the phantom that mimics tissue.

For the porcine subjects, we employ a UNet-based seg-
mentation model with a weak supervision data augmentation
technique to obtain masks for vessels from ultrasound images
[16]. These masks are then stacked by robot pose to create a
solid volume of the vessel. This volume is processed through
marching cubes to obtain a hollow mesh which is then fused
with an artificially-added outer mesh that represents tissue.
The resulting mesh is tetrahedralized for results similar to the
phantom model. Fig 2 shows the medical image data and the
generated 3D models of the phantom and the porcine vessels.

Fig. 2. a. The CT volume of the blue-gel phantom; b. The tetrahedral
mesh of the blue-gel phantom; c. The stacked ultrasound volume of a pig
vessel; d. The tetrahedral mesh of the pig vessel

B. Simulation

We use the SOFA library [17] for our simulations and pa-
rameterize the simulation in a simplistic manner. We assume
that material density, Young’s modulus E and Poisson’s ratio
ν are the primary factors affecting the response of a model to
applied forces. After defining the correct transformations that
register our simulation frame to the robot frame, we load our



3D tetrahedral model for simulation. We define downward
gravity and define all the points at the base of the model
as fixed. By defining simulation parameters such as material
properties, force and application direction, we simulate the
probe-phantom interaction resulting in vessel deformations.

C. Calibration with IoU

In our setup, we assume that the exact material properties
of the subject are unknown. While the material properties
for the phantom are known as it is a standard equipment,
this information has to be estimated for the tissue of every
new subject that we would want to perform deformation
simulation for. It then becomes necessary to apply some
form of per-subject estimation. In our case, we have done
this through an optimization for E and ν of the material
by maximising the overlap of the vessel area between the
ultrasound images and the corresponding cross-sections from
generated simulations. This is performed for the model of the
phantom for which the material density was known.

The idea is that since the simulation frame is registered
to the robot, the cross section from the deformed model at
a given pose p and force f , along the image plane, should
resemble the vessel anatomy seen in the ultrasound image
collected by the robot at p and force f . We use the IoU
between vessel regions to determine the overlap and use it
as a reward in a Cross-Entropy Maximization method.

V. EXPERIMENTS AND RESULTS

We apply the iterative Cross Entropy Maximization
method [18] for optimization with 8 agents, sampling values
for E and ν from known ranges for the gel material of the
phantom. 2 agents are purely exploratory and the ranges are
60-850 kPa [19] and 0.47-0.49 for E and ν. The optimization
was considered converged when the standard deviation was
lower than 5 and 0.005 for E and ν respectively. With
the addition of scattering agents to the polymers used for
manufacturing the blue-gel phantom, we expect a slight
deviation from the expected 600 KPa and 0.48 values for two
the parameters. We perform the optimization at two poses
with 3 different force values (6, 8 and 10 N) and average over
them for obtaining the final calibrated material properties. All
6 optimizations converged within 10 epochs.

Fig. 3. The mean E (left) and ν (right) values (with standard deviations
in grey) after each epoch of the optimization for pose 1, force 8 N.

The graph showing the convergence of the optimization for
the blue-gel phantom model is shown in Fig 3. The average
converged values for Young’s Modulus and Poisson’s Ratio
are 592.5433 ± 20.13 kPa and 0.482 ± 0.003. The highest

IoU at the poses where the optimization was applied was
0.76. The simulation and optimization results for the blue-
gel phantom showing the contours from the cross section
of the deformed mesh progressively aligning better with the
vessel masks from the ultrasound data are seen in Fig 4.

Fig. 4. a. The ultrasound image captured by the robot at pose 1 with force
6 N; b. Vessel masks identified in the ultrasound image by our segmentation
model; c. The cross-section contours from the undeformed mesh at pose 1.
d-f. Cross-sections from the deformed phantom model with the registered
vessel masks at pose 1. The cross-sections were generated with applied
force 6 N, simulated with material properties estimated in epochs 0, 2, 6
and 8 of the optimization respectively.

VI. DISCUSSION AND CONCLUSION

We observe that after optimization, the highest IoU score
in simulations across all the poses at three different forces
is 0.79 with the average being 0.72. This shows that our
parameter estimates work uniformly at all poses over the
homogeneous phantom. The gap in the IoU from the perfect
score of 1 can be attributed to some of the assumptions
made in our simplified model and to discrepancies arising
from obtaining vessel masks in both CT and ultrasound data.
We do not simulate fluid inside the vessels and assume that
the Young’s Modulus and Poisson’s Ratio are sufficient to
model soft tissue properties. The vessel masks obtained either
through thresholding or segmentation are prone to noise in
the data and to the robustness of the segmentation model.

In this work, we show a method to use tomographic
medical images (CT and ultrasound) of vessels to build
models for deformation simulations. Additionally, we show
how to use these medical images to approximate the material
properties of tissue. While we have reconstructed vessel
structures from porcine subjects and processed them suc-
cessfully to work with our simulation pipeline, we are yet
to try the optimization for these models and are in the
process of collecting more real-world data for this purpose.
Currently, the optimization process is lengthy, given that
multiple simulations have to be run to find optimal material
properties. While using low resolution models and GPU
compute can speed this process, our method is still slow
for real-time applications, taking 40 mins for a single epoch.
However, data generation through our method is feasible and
currently, our group is using this method to generate training
data for force-conditioned 3D flow estimation networks.
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