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Abstract— The problem of robotic deformable object manip-
ulation (DOM) has increased interest in the academic field.
Methods involving various software and hardware components
have been proposed and are bound to change. Solutions based
on different approaches coexist, potentially with a strong focus
on certain types of soft objects. Hence, when designing a robotic
system capable of handling soft objects of different natures, this
multitude of solutions is difficult to manage.

This paper proposes a methodological approach to this
problem. We categorize methods for DOM based on a semantic
description of the soft object and its manipulation context.
Moreover, we propose a listing of data types relevant to
DOM for specifying hardware and software components. The
methodology identifies and bridges gaps in the state of the art.
This contribution is a base for future developments in computer-
aided design of robotic systems involving DOM.

I. INTRODUCTION

It is commonly admitted that manipulating deformable
objects with robots requires specific contributions compared
to rigid part manipulation. This specificity affects many
aspects of robotics, including perception, modeling, plan-
ning, control, and actuator technology [1]. Surveys indeed
highlight the variety of approaches that have been developed
to address the deformable nature of soft objects [2]–[6]. They
also evidence that such approaches are often aimed at objects
with specific characteristics, and/or in specific manipulation
contexts. For instance, operations such as cloth folding [7],
[8] or cable routing [9], [10] are heavily investigated.

Contributions are based on different methodologies, which
introduces incompatibilities between approaches. To name a
few, we may think about:

• deformation modeling, with radically different ap-
proaches of machine learning or real-time dynamic
simulation,

• shape control algorithms, where model-based and
model-free methods coexist,

• perception algorithms, where visual, tactile, and force-
based modalities coexist.

When designing a robotic system that manages objects
of different characteristics in different contexts, the problem
of finding an efficient solution in terms of hardware and
software components is exacerbated. We target reconfig-
urable assembly cells or household robot assistants, which
are supposed to perform a broad range of operations. Ideally,
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the number of components to be developed should remain
limited, and reuse should be favored [11]. A robotic system
defined by the union of all relevant literature solutions would
be costly and difficult to operate, needing significant efforts
in all aspects (sensor integration, modeling, programming,
and so on). Hence, there is a need for a methodology that
helps the designer pick a solution that performs a maximum
of operations with a minimal number of components.

Contribution: To lay the foundations of such a method-
ology, we propose formalizing soft object and manipulation
context properties. In particular, a semantic approach is
proposed to find suited hardware and software components.
Using this approach, we identify similarities and gaps wrt.
the state of the art. While the design approach is not
automated and requires extensive bibliography knowledge,
limiting its potential, we believe that this early work can
spark interest among the community, identify scientific gaps
formally, and help direct future efforts.

II. SEMANTIC DESCRIPTION OF METHODS

Knowledge modeling: The proposed methodology
needs to use the knowledge in the field of DOM, to pick
hardware and implement programs. Hence, we are faced with
the need to capture this knowledge. In systems engineering,
a common approach involves using modeling languages [12].
Generic models for robotic system description have been
proposed, such as the Core Ontology for Robotics and
Automation from IEEE 1872-2015 standard [13]. However,
they do not consider concepts linked with DOM, limiting
their use in this context. In line with definitions of ontology
modeling, as presented in their application to robotics in [14],
we propose:

• a list of properties to identify different types of de-
formable objects (ontological classes),

• those properties having a finite set of semantic (ie. non-
numeric) values (ontological functions).
Property listing: We build upon the bibliography to

propose the list of deformable object properties and their
associated semantic values.

Property: GRASPINGMODALITY
Values: {pinch, suction, magnetic, ...}

This property explores the physical effect used for grasp-
ing. It is directly linked with actuator technology. Pinch
grasping through parallel grippers is encountered in many
applications [10], [15]. However, grasping an object by both
sides may prevent establishing contact with the environment,
such as in layering operations [16], [17]. Knowledge of



context and object properties allows for choosing suitable
grasping modalities.

Property: OBJECTGEOMETRY
Values: {uniparam, biparam, triparam}

This property relates to the object’s geometry and in partic-
ular, the existence of symmetries and negligible dimensions.
Uniparametric objects are cables or belts, biparametric ob-
jects are clothes or shells. The influence of object geometry
on solutions for manipulation has been identified clearly in
surveys [2], [3], [6].

Property: OBJECTBEHAVIOR
Values: {isometric, extensible, flexrigid, foldable,
elastic, plastic}

This property relates to the deformation characteristics of
the object. We propose a classification along three criteria (i)
tensile behavior along non-negligible dimensions (ii) flexion
behavior along non-negligible dimensions (iii) reversibility
of deformation. Respectively, an object may encounter iso-
metric deformation or stretch, oppose resistance to flexion
or not, and deform elastically or plastically.

Combining OBJECTGEOMETRY with OBJECTBEHAVIOR,
it is easy to identify commonly encountered types of objects.
Some examples are proposed in the following list.

• Towel: biparametric isometric foldable elastic
• Origami: biparametric isometric foldable plastic
• Rubber seal: biparametric extensible flexrigid elastic
• Wire harness: uniparametric isometric flexrigid elastic

Property: CONTACTBEHAVIOR
Values: {avoid, sliding, sticky}

This property relates to the context of the operation and the
possibility to undergo environmental contact. We distinguish
here three cases. The first case consists in avoiding other
contacts than at the grasping points, which is typical for
transportation [18]. The second case consists in having slid-
ing contacts, thus allowing the usage of an external surface
to maintain the object in a given position (eg. a table for
cloth folding). Finally, objects that are sticky or impregnated
with glue have an adhesive behavior, which notably makes
precise positioning more tedious than in the sliding case.

Property: TARGETQUANTITY
Values: {point, pcl, contour, parametricshape, pla-
narity, tension, strain, stress, hardness}

This property relates to the quantities of interest for the
successful completion of manipulation in a given context. We
consider here not only the main goal but also variables that
are constraints in the problem. For instance, a shape control
algorithm may aim at reaching a desired state represented
by a pointcloud, while enforcing limits on stresses within
the object to avoid damaging it. Semantic values such as
the coordinate of a (cloud of) point(s) are common targets
for DOM control algorithms [19], [20]. Foldline positioning
may be thought as a specific case of pointcloud-based target
definition [21]. Contour-based target definition was also

explored [22]. Parameter-based definitions of shapes may be
used for some uniparametric or biparametric objects [16],
[23]. Planarity measures are of interest for wrinkle removal
[24]. Tension control in belt-like objects was tackled in
[23]. Strain and stresses may be monitored through real-time
simulation. Hardness is considered when processing organic
materials [25]. This list is in line with our analysis of the
state of the art but is likely to evolve in the future as new
contexts are tackled.

Property: PERCEPTIONQUANTITY
Values: {pcl, partialpcl, pixelvalues, pixelcontour,
pattern, wrench, contactpressure, contactdirection}

This property relates to the raw quantities outputted by
sensors in DOM context. Deformation sensing is vastly
used in the field. The main reason is that loop closure
brought by sensing mitigates the necessity for very fine
modeling of deformation dynamics. Surveys agree upon three
main modalities that are vision, force sensing, and tactile
sensing. Vision-based algorithms may make use of 2D image
characteristics (eg. contours [22], pattern [15] or pixel values
to detect wrinkles), but depth information is also largely
used [26]. It makes sense to distinguish contexts in which
occlusions may occur, as special efforts are needed when
object view is only partial. Wrench sensing at the robot wrist
has been used to estimate deformation [27]. In-hand tactile
sensors are also used to measure the magnitude of contact
pressure, with more advanced sensors also capable of giving
its direction [28]. In the context of multi-modal perception,
many such deformation cues may be used within the same
program.

Property: MODELTYPE
Values: {explicit, implicit, discrete, surrogate, par-
ticle, constitutive, paramgiven, paramlearned, para-
mestimated, online, offline}

This property relates to the nature of models used to
represent object deformation. We are inclined to adopt the
categorization from [4]. Firstly, the shape may be represented
implicitly, explicitly, or discretely. We can think of catenary
models [16] or mathematical representations [29]. Secondly,
deformation dynamics may come from surrogate models (eg.
learning [30]), particle systems (eg. position-based dynamics
[31]), or constitutive equations (eg. finite element [19], [20],
[27], [32], mass-spring models [33]). Thirdly, the parameters
of such models may be given by the user (eg. following
tensile testing), learned, or estimated online. Moreover, it is
relevant to state whether a model can be executed in real-
time or not.

III. USAGE FOR ROBOTIC SYSTEM DESIGN

The methodology deployment is illustrated using the con-
tribution of [23]. It consists in positioning the tip of a raw
rubber band wound to a bobbin while ensuring minimal
tension within the material. This is one of several operations
to be performed within the flexible robotic cell, alongside
cutting and assembling the rubber bands.



GRASPINGMODALITY suction
OBJECTGEOMETRY uniparam
OBJECTBEHAVIOR isometric flexrigid elastic
CONTACTBEHAVIOR sticky
TARGETQUANTITY point tension
PERCEPTIONQUANTITY partialpcl pixelvalues pix-
elcontour
MODELTYPE online

Fig. 1: Values of semantic properties for the use case.

value [16] [20] [30] [34] [35]
suction × × × ×

uniparam × ×
isometric × ×
flexrigid
elastic
sticky × × × ×
point × × ×

tension × × × ×
partialpcl × × × ×

pixelvalues × × × × ×
pixelcontour × × × × ×

online
D 3 8 8 6 8

TABLE I: Abidance of methods from the literature with
desired values of properties.

Step 1 - semantic description of object and context: This
first step involves identifying semantic values for properties
describing the desired operation context. At this step, we
mainly revoke inappropriate solutions. The main constraints
regarding our operational context are as follows: (i) the
material is not magnetic and cannot be grasped by parallel
fingers, since it is sticky and needs to be laid flat (ii) we
wish to reuse the RGB-D camera system implemented for
other operations instead of adding new sensors (iii) the object
is of solid color and shows no distinguishable texture (iv)
the algorithm must react to disturbances, hence we aim at
controlling robot motions on-line. Taking those constraints
into account, the set of ontological properties to be met is
reported on Fig. 1

Step 2 - evaluation of similarity with existing methods:
The second step consists in comparing targeted properties
with methods from the literature. We check abidance with
the set of properties specified above. This is illustrated in
Table I, resulting in a measure of dissimilarity D between
methods, computed as the number of mismatched values
of properties. To obtain this result, bibliography entries
need to be reviewed. Identifying property values from ar-
ticles requires a moderate knowledge of the field: an in-
depth understanding of deployed methods is unnecessary,
but use cases must be analyzed thoroughly. In deploying the
methodology illustrated in Table I, one solution amongst the
reviewed approaches edges ahead in terms of similarity.

Step 3 - identification of components to be created:
In this final phase, we identify the scientific gaps to bridge
wrt. the most similar solution. The main assumption here

is that the lower the dissimilarity, the more relevant to the
use case the methods for perception, modeling, control, etc.
From Table I, properties related to object characteristics
are satisfied, while mismatches are related to perception.
Indeed, it appears that [16] uses the catenary model, whose
assumptions are also valid in our use case of rubber band
manipulation. Moreover, the catenary model provides explicit
tension computation from the position of the tips. Hence, it
is more suitable than finite element modeling or Kirchoff
rod theory for instance. On the contrary, special efforts
were needed to estimate and control tension from RGB-D
measurement rather than force sensing, leading to a new
contribution [23].

Outcomes and expected gains: The newly developed
solution benefited from inferior material costs by not requir-
ing dedicated force sensing and easier implementation by not
requiring force control of robots. It was proven to control the
tension adequately in quasi-static operation mode. Hence,
this use case exemplifies the idea that formal analysis of
literature and similarity assessment can help direct and plan
scientific efforts. The result is a robotic system dedicated to
DOM whose capabilities are improved with minimal material
cost and low added complexity.

Future developments: The first challenge lies in the
construction of a database of methods. To create compar-
isons such as in Table I, two elements are mandatory: the
expertise to assign semantic values from literature analysis
and the structuration of such data through software. Hence
the method calls for an in-depth survey of the literature on
one side, and the storage of survey results in a database on
another. The second challenge consists of software assistance
to explore the design space and identify methods that are
optimal in terms of similarity. Early results using PDDL to
manipulate semantic values showed the chaining of heteroge-
nous components to construct a functioning robotic system.
However, the required expertise to set up the PDDL problem
and analyze solver outputs must be reduced for transfer to
the industry.

IV. CONCLUSION

In order to facilitate robotic system design and bibliogra-
phy analysis, we propose a semantic description of methods
dedicated to deformable object manipulation. It revolves
around a set of properties related to soft object characteristics
and manipulation context. By analyzing values of properties,
the similarity between methods is evaluated. This measure
can be used as assistance to the design of new algorithms
which augment the capabilities of a robotic system.

A direct perspective consists of a deeper bibliographic
analysis to validate and augment the number of properties
and semantic values, in order to catch the specificities of each
application involving deformable objects. In the long run,
software tools should be proposed to facilitate methodology
usage and achieve the computer-aided design of multi-
purpose robotic systems dedicated to DOM.
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G. Alenyà, M. Beetz, and H. Li, “A review and comparison of
ontology-based approaches to robot autonomy,” The Knowledge Engi-
neering Review, vol. 34, p. e29, 2019.

[15] M. Aranda, J. Antonio Corrales Ramon, Y. Mezouar, A. Bartoli,
and E. Ozgur, “Monocular Visual Shape Tracking and Servoing for
Isometrically Deforming Objects,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), (Las Vegas,
NV, USA), pp. 7542–7549, IEEE, Oct. 2020.

[16] S. Flixeder, T. Glück, and A. Kugi, “Force-based cooperative handling
and lay-up of deformable materials: Mechatronic design, modeling,
and control of a demonstrator,” Mechatronics, vol. 47, pp. 246–261,
Nov. 2017.

[17] R. K. Malhan, A. V. Shembekar, A. M. Kabir, P. M. Bhatt, B. Shah,
S. Zanio, S. Nutt, and S. K. Gupta, “Automated planning for robotic
layup of composite prepreg,” Robotics and Computer-Integrated Man-
ufacturing, vol. 67, p. 102020, Feb. 2021.

[18] D. McConachie, A. Dobson, M. Ruan, and D. Berenson, “Manipu-
lating Deformable Objects by Interleaving Prediction, Planning, and
Control,” The International Journal of Robotics Research, vol. 39,
pp. 957–982, July 2020. arXiv:2001.09950 [cs].

[19] F. Ficuciello, A. Migliozzi, E. Coevoet, A. Petit, and C. Duriez, “FEM-
Based Deformation Control for Dexterous Manipulation of 3D Soft
Objects,” in 2018 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), (Madrid), pp. 4007–4013, IEEE, Oct.
2018.

[20] A. Koessler, N. R. Filella, B. Bouzgarrou, L. Lequievre, and J.-
A. C. Ramon, “An efficient approach to closed-loop shape control
of deformable objects using finite element models,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA), (Xi’an,
China), pp. 1637–1643, IEEE, May 2021.

[21] I. Garcia-Camacho, M. Lippi, M. C. Welle, H. Yin, R. Antonova,
A. Varava, J. Borras, C. Torras, A. Marino, G. Alenya, and D. Kragic,
“Benchmarking Bimanual Cloth Manipulation,” IEEE Robotics and
Automation Letters, vol. 5, pp. 1111–1118, Apr. 2020.

[22] J. Zhu, D. Navarro-Alarcon, R. Passama, and A. Cherubini, “Vision-
based manipulation of deformable and rigid objects using subspace
projections of 2D contours,” Robotics and Autonomous Systems,
vol. 142, p. 103798, Aug. 2021.

[23] N. Roca Filella, A. Koessler, C. Bouzgarrou, and J. A. C. Ramon,
“3D Visual-Based Tension Control in Strip-Like Deformable Objects
Using a Catenary Model,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), (Kyoto, Japan), p. 8, Oct. 2022.

[24] C.-Y. Tsai, “Wrinkle contraction direction: a useful feature for learning
robotic fabric manipulation from demonstration,” Master’s thesis, TU
Delft, Netherlands, 2021.

[25] Z. Zhang, J. Zhou, Z. Yan, K. Wang, J. Mao, and Z. Jiang, “Hardness
recognition of fruits and vegetables based on tactile array information
of manipulator,” Computers and Electronics in Agriculture, vol. 181,
p. 105959, Feb. 2021.

[26] A. Petit, F. Ficuciello, G. A. Fontanelli, L. Villani, and B. Siciliano,
“Using Physical Modeling and RGB-D Registration for Contact Force
Sensing on Deformable Objects:,” in Proceedings of the 14th Interna-
tional Conference on Informatics in Control, Automation and Robotics,
(Madrid, Spain), pp. 24–33, SCITEPRESS - Science and Technology
Publications, 2017.

[27] J. Sanchez, K. Mohy El Dine, J. A. Corrales, B.-C. Bouzgarrou, and
Y. Mezouar, “Blind Manipulation of Deformable Objects Based on
Force Sensing and Finite Element Modeling,” Frontiers in Robotics
and AI, vol. 7, p. 73, June 2020.

[28] W. Yuan, C. Zhu, A. Owens, M. A. Srinivasan, and E. H. Adelson,
“Shape-independent Hardness Estimation Using Deep Learning and
a GelSight Tactile Sensor,” in 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 951–958, May 2017.
arXiv:1704.03955 [cs].

[29] D. Navarro-Alarcon and Y.-H. Liu, “Fourier-Based Shape Servoing:
A New Feedback Method to Actively Deform Soft Objects into
Desired 2-D Image Contours,” IEEE Transactions on Robotics, vol. 34,
pp. 272–279, Feb. 2018.

[30] R. Laezza and Y. Karayiannidis, “Learning Shape Control of Elasto-
plastic Deformable Linear Objects,” in 2021 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 4438–4444, May
2021. arXiv:2208.02067 [cs, eess].

[31] P. Guler, A. Pieropan, M. Ishikawa, and D. Kragic, “Estimating
deformability of objects using meshless shape matching,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), (Vancouver, BC), pp. 5941–5948, IEEE, Sept. 2017.

[32] S. Duenser, J. M. Bern, R. Poranne, and S. Coros, “Interactive Robotic
Manipulation of Elastic Objects,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), (Madrid),
pp. 3476–3481, IEEE, Oct. 2018.

[33] J. Das and N. Sarkar, “Autonomous Shape Control of a Deformable
Object by Multiple Manipulators,” Journal of Intelligent & Robotic
Systems, vol. 62, pp. 3–27, Apr. 2011.

[34] O. Aghajanzadeh, M. Aranda, J. A. Corrales Ramon, C. Cariou,
R. Lenain, and Y. Mezouar, “Adaptive Deformation Control for Elastic
Linear Objects,” Frontiers in Robotics and AI, vol. 9, p. 868459, Apr.
2022.

[35] M. Shetab-Bushehri, M. Aranda, Y. Mezouar, and E. Ozgur, “Lattice-
based shape tracking and servoing of elastic objects,” Sept. 2022.
arXiv:2209.01832 [cs].


