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Abstract—This paper tackles the robotic manipulation of
Deformable Linear Objects (DLOs), focusing on the shape control
task. A neural network (NN) is trained to replicate the DLO
dynamics using data generated by an analytical model. Then, the
NN-based model is utilized for shape control, where manipula-
tion actions are optimized via gradient descent. Simultaneously,
the same NN undergoes gradient-based optimization to adjust
several model parameters given the observed real-world DLO
dynamics. Experimental validation showcases the effectiveness
and efficiency of the proposed approach across diverse DLOs,
surfaces, and target shapes.

Index Terms—deformable linear objects, shape control

I. INTRODUCTION

Robotic handling of Deformable Linear Objects (DLOs)
like ropes, cables, and wiring harnesses poses significant
challenges both from the perception and manipulation per-
spectives. Indeed, it is difficult to detect DLOs [1], [2] and
to estimate their full state [3], especially given their small
size [4]. Manipulation is also complex due to DLOs high-
dimensional state-space and complex dynamics [5]–[8].

Shape control of DLOs typically refers to two manipulation
scenarios aiming to achieve a desired target shape. Common
settings are: 1) Handling a soft DLO involving sequential pick-
and-place actions, with surface friction holding the deforma-
tion of the DLO in place [5], [9], [10]; 2) Manipulation of
elastic DLOs with one or more robotic arms, or with one
end of the DLO fixed, allowing for better shape control,
particularly in scenarios where stiffness varies or rigid/plastic
behavior is involved [6], [7], [11]–[13]. Another typical differ-
entiation within the shape control task is between model-free
approaches, e.g. [13]–[16], and model-based ones, e.g. [5]–[8].

In this paper, a manipulation framework exploiting a phys-
ical prior of DLOs dynamics is proposed for shape con-
trol. A learned neural network (NN) model of the DLOs’
dynamics is developed to predict the DLO behavior under
manipulative actions. First, an analytical DLO model based
on the mass-spring-damper formulation [17] is employed for
dataset generation by systematically sampling a variety of
model parameters, diverse DLO configurations, and various
manipulation actions. Consequently, an NN is trained utilizing
this generated dataset, i.e. training phase of Fig. 1. Notably, the
NN is conditioned over several analytical model parameters,
such that it can be easily adapted to match different real-world
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Fig. 1: Schematic overview of the manipulation framework.

DLOs. The obtained NN model is employed during the online
phase of Fig. 1 to estimate the manipulation actions to steer the
DLO from its initial to a final target configuration, performing
the shape control task.

The proposed framework can directly be applied for the
manipulation of various DLOs on diverse surfaces, thanks
to the data-driven approximation of the DLO dynamics con-
ditioned on the model parameters. Therefore, there is no
need to: 1) generate every time new task-specific data as in
[12], 2) introduce complex online adaptation controllers as in
[6], [7], 3) perform cumbersome and not intuitive parameters
identification procedures as in [8], [18].

This paper is a compressed version of [19], we invite
interested readears to refer to the full version.

II. METHOD

A. Analytical Model
A DLO is physically modeled using nodes with mass con-

nected by axial springs, forming a serial chain [17] (see Fig. 2).
Torsional springs at each node represent bending stiffness,
while damping terms, proportional to node velocity, enhance
model stability. Therefore, the dynamics of the generic node
i can be written as:

mip̈i = −kdṗi + fsi + f bi , (1)

where p is the node coordinates, kd a damping constant, fs
i

the force due to the axial effects and f b
i the forces due to the

bending effects, see [19] for more details.
The manipulation action executed on the DLO model is

parametrized as a pick-and-place operation executed on the
edge of the DLO, i.e. between two consecutive nodes. The
DLO action parameters vector is defined by a = [α, δx, δy, δθ],
where α denotes the index of the edge to grasp, δx and
δy are the linear displacements applied to the selected edge
{pα,pα+1} and δθ is the rotation applied to the initial edge
orientation. The effect of the action is simulated using forward
Euler method applied to the discretized version of eq. (1).



Fig. 2: DLO analytical model representation.
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Fig. 3: Neural network architecture.

B. Neural Network Model

The complexity of the analytical DLO model affects its
performance and makes using it in an online framework chal-
lenging. Instead, a NN can be trained to accurately replicate
the DLO dynamics by exploiting a dataset of DLO movements,
which can be generated offline using the analytical DLO
model. Therefore, a constant and short inference time is
obtained by the NN, which is more than an order of magnitude
smaller than the time needed to evaluate the analytical DLO
model. Additionally, the NN model is easily differentiable
wrt the parameters, improving the possibility of optimizing
all relevant tasks.

1) Dataset Generation: The dataset is generated by simu-
lating the analytical DLO model subjected to a set of random
actions. Each data sample consists of the DLO initial and final
configurations (Vin and Vout), the performed action, and the
employed model parameters. Concerning the latter, ks is kept
fixed to a high value (negligible axial deformation), instead the
damping kd, the bending kb, the length of the DLO, and the
mass of the DLO change within predefined ranges. Indeed,
aiming to learn a general DLO model, both the action and
model parameters are drawn from a broad range of values
covering the expected real-world variability.

To generate the dataset, the physical parameters are set
to random values from the physically plausible ranges, and
the simulated DLO is initialized with an almost linear initial
configuration. Then, a set of k actions is sampled and the
behavior of DLO is simulated after applying them sequentially.

2) Data Augmentation: To improve the training efficiency
and generalization capabilities of the NN model, several aug-
mentation and normalization strategies are implemented on the
data. The idea is to exploit the symmetries in the DLO data
to reduce the amount of information the NN has to learn.

The normalization is performed by finding a transformation
that makes Vin aligned to the x-axis and mean-centered, and
applying it to normalize both Vin and Vout. In addition, the
action parameters are scaled to be within the [0, 1] range for α
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Fig. 4: Gradient-based action and DLO parameters estimation.

and [−1, 1] range for the displacements. The model parameters
are also normalized within the [0, 1] range.

3) Neural Network Architecture: The neural network archi-
tecture is based on a set of Linear layers followed by ReLU
activation functions. In detail, the network is composed of
four main blocks illustrated in Fig. 3: the action block, the
physical parameters block, the DLO block, and the prediction
block. The input of the network is the initial configuration
of the DLO Vin, the action parameters a, and the model
parameters p = [m, kb, kd]. The output of the network, denoted
as Ṽ , is the sequence of predicted changes of the 2D DLO
coordinates from the initial configuration. The final predicted
DLO configuration Vpred is expressed as Vpred = F(Vin, a, p) =
Ṽ (Vin, a, p)+Vin. The network is trained to minimize the mean
squared error between the predicted Vpred and the expected Vout
final configurations.

C. Gradient-based Estimation of Action and Parameters

The trained NN model is used to estimate both the next
manipulation action and the parameters that allow for accurate
approximation of the observed DLO behavior. These two esti-
mation procedures exploits a loss functions which is computed
as the sum of L2 norms between corresponding points among
two states, i.e. as D(V1, V2) =

∑n
i=1∥V1,i−V2,i∥. A gradient-

based approach is used for the optimization of the above-
mentioned loss function, see Fig. 4.

1) Action Estimation: For the best action estimation given
the current DLO state Vin and the model parameters p, the
action parameters a minimizing the difference between the
NN prediction F(Vin, a, p) and the target shape Vtgt are sought.
Therefore, the efficient batch processing capabilities of the NN
model are employed, and n − 1 optimizations are executed
simultaneously, one for each edge index. Then, the best action
among the ones evaluated for each edge is selected.

2) Parameters Estimation: Similarly to actions, the model
parameters are estimated by searching for the ones that min-
imize the difference between the NN prediction Vpred and the
observed DLO state Vout. Since the mass m can be measured,
only kd and kb are estimated while m is directly provided as
input to the NN model.

III. SHAPE CONTROL EXPERIMENTS

A robotic setup composed of a Panda Robot equipped with
a parallel-jaw gripper is employed for evaluating the approach.
Three ropes are used in the experiments: a white rope (0.45
m, 0.02 kg, 0.01 m diameter); a black rope (0.42 m, 0.05 kg,
0.014 m diameter); and a red rope (0.50 m, 0.02 kg, 0.005 m
diameter). Note, the black rope is the stiffest one, while the red
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Fig. 5: Outcomes of the shape control task involving online adaptation of model parameters, conducted across various rope
types and surfaces. Average results across 5 repetitions per task (standard deviations confidence region intervals). In the legends,
cl denotes ”cloth” while cb indicates ”cardboard”.
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Fig. 6: Prediction errors using mid-range, online estimated,
and best model parameters across ropes and surfaces.

rope exhibits a higher degree of bending elasticity compared to
the white rope. Additionally, two planar surfaces with different
physical properties are used: a cloth and a cardboard surface.
The cardboard is smoother and more slippery than the cloth.

A. Shape Control Task with Online Parameters Estimation

The shape control task involves the manipulation of four
distinct target shapes: U, A, S and I. The task is performed as
follows. The initial DLO configuration Vin is a straight line,
model parameters are kd = 14 and kb = 0.5 (mid range of
values). The task is executed for each target shape Vtgt on each
planar surface 5 times. The execution of the task is terminated
once the error D(Vout, Vtgt) < 0.01 m.

The results of the experiments are provided in Fig. 5, where,
within each subplot of a specific rope, columns illustrate the
task execution for specific target shapes, while rows provide
an analysis of error and model parameters. In detail, the first
row focuses on the mean error, with a dashed horizontal line
denoting the 0.01 m threshold marking the completion of the
task. The second and third rows delve into the examination
of the bending parameter kb and the damping parameter kd
respectively. Here, the dashed lines represent the estimated
model parameters derived from all samples across all repeti-
tions performed for a given shape. These values, in essence,
serve as potential reference values for the specific parameters.

Analyzing the x-axis in the plots, iteration 0 represents
the initial condition with a straight DLO configuration and
model parameters at their initial values. An action, computed
based on Sec. II-C1, is then executed by the robotic system,

updating the observed DLO configuration. Model parameters
are recalculated based on a single data sample (see Sec. II-C2),
resulting in updated values at manipulation iteration 1. This
iterative process continues until the specified termination con-
dition is met. At manipulation iteration m, the parameter
estimation is based on m data samples.

Examining the plots in Fig. 5, it is worth noting that similar
bending parameters are consistently estimated for each specific
rope on the cloth surface, regardless of the chosen target shape.
The parameters estimated on the cardboard surface exhibit a
higher degree of variability, indicating the presence of more
complex dynamics due to increased slippage. The estimation
of the damping term is less stable. In general, different pairs
of kd and kb values are estimated for the same rope on
different surfaces, highlighting the adaptation processes. The
estimated bending parameters comparison confirms signifi-
cantly different physical properties between the three ropes
and that the black rope is the stiffest one, as initially predicted.
For instance, on the cloth surface, the reference bending values
are approximately 0.06 and 0.08 for the white and red ropes
and about 0.19 for the black rope.

To gain a deeper insight into the impact of the online model
parameters estimation, Fig. 6 presents a comparison among
mid-range, online estimated, and best parameters. The latter
refers to those estimated at the end of each task repetition,
while the mid-range to the ones from which online estimation
starts. These parameter setups were compared using the mean
prediction error, denoted as D(Vpred, Vout), computed after each
iteration of the shape control task across all the target shapes.
The plots illustrate how, within just a few iterations, the
proposed method attains parameters that yield a mean error
between Vpred and Vout comparable to the best scenario, and in
most of the cases significantly better than for the mid-range
parameters. IV. CONCLUSION

The proposed manipulation framework effectively tackles
shape control tasks involving various real-world DLOs and
contact surfaces. It employs online parameter estimation to
make the NN model predictions closely match the manipulated
DLO. The efficiency of the NN model in approximating DLO
dynamics is evident in both action and parameter estimation.
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