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Abstract—Despite their prevalence, interacting with De-
formable Objects (DOs) poses challenges for robotic systems due
to their complex perception. This paper introduces a method
for pixel-level labeling of DOs, starting from sparse key point
annotations, enabling the creation of real-world datasets with
minimal human effort. The approach involves three steps: 1)
Collecting images using a camera-equipped robotic arm, 2)
Sparse annotation of key points by the user on one image,
and 3) Converting sparse annotations into dense labels using
a foundation model in zero-shot settings for segmentation tasks.
Validation on cloth and rope-like objects demonstrates practical-
ity and efficiency, laying the groundwork for seamless integration
of deep learning perception into robotic agents.

Index Terms—Deformable Objects, Semantic Segmentation,
Dataset Generation, Deep Learning, Garment Perception, Cloth

I. INTRODUCTION

Deformable Objects (DOs) refer to objects with the ability
to change their shape when subjected to external forces. They
are commonly encountered in everyday life, such as clothes
and garments, which are commonly referred to as Deformable
Planar Objects (DPOs), or cables, wires, and ropes, known
as Deformable Linear Objects (DLOs). These objects are
also prevalent in various fields, including the medical [1],
agricultural [2], and industrial domains [3], [4].

The perception of DOs poses challenges due to their in-
herent deformability, which makes their shape unpredictable,
as well as the limited (or possibly lack of) relevant features
to be used in common computer vision approaches [4]–[6].
To address these challenges, new perception methodologies
based on deep learning are crucial, particularly concerning
the segmentation of DOs. However, these approaches require
training data [7]. The size and quality of datasets greatly
affect the performance of existing data-driven approaches,
particularly in the DOs domain [8], making the development
of efficient data collection and labeling procedures desirable.

In previous work, we introduced DLO-WSL, a method for
labeling DLOs such as cables and wires with minimal effort
using a spatial sensor and an eye-in-hand robot camera [4].
However, the approach relied on knowledge of the target
DLO (e.g., diameter) and a specifically designed learned label-
tuning algorithm for error correction. Therefore, DLO-WSL
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Fig. 1: Robot equipped with eye-in-hand camera collects
multiple camera samples. User sparsely annotates each object
in one image, and dense annotations are extracted for all
images using a pre-trained foundation model.

is not readily applicable to other DOs and is subject to
domain shift problems when dealing with DLOs with quite
different textures, such as ropes. In this paper, we focus on
eliminating these constraints to convert sparse annotations
into dense masks in the most general and versatile manner
possible. Fig. 1 provides an overview of the approach. By
harnessing the capabilities of a pre-trained foundational model
[9], specifically the Segment Anything Model (SAM) [10],
we can convert any sparse annotation into a dense one with-
out requiring fine-tuning steps or domain-specific knowledge.
Additionally, the utilization of an eye-in-hand camera robot
allows us to expand the set of samples collected with just
one annotation. This enhances the method’s portability and
efficiency by simplifying the approach and making it more
cost-effective, thus increasing the likelihood of adoption by
robotics practitioners.

II. METHOD

A. Dataset Collection and Sparse Key-points Input

1) Data Collection: To collect the set of images, knowledge
of the images and the camera’s position in the world coordinate
system is essential [4], [11]. This is accomplished by using
a calibrated 2D RGB camera mounted on the flange of a
robotic arm in an eye-in-hand setup. With this information, an
ellipsoidal robot trajectory is executed to collect visual samples
of the DOs, ensuring that the object remains at the trajectory
center while the camera is inward-facing, see [4].

An illustration of the ellipsoidal trajectory with several
reference frames (e.g., F1,F2, . . . ,Fn) is shown in Fig. 2.
For clarity, only the z-axis is shown in several frames. The
camera frame is denoted as Fc.
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Fig. 2: On the left side, dataset labeling with SAM involves projecting sparse user labels into world coordinates, prompting
SAM with these points for each dataset sample, and then merging the results to derive final labels. On the right side, a schematic
view of the robotic setup, ellipsoidal trajectory, and main reference frames utilized.

2) Key Points-based User Sparse Annotation: Next, a top-
view perspective image from the collected dataset is used to
generate sparse labels for the entire dataset, denoted as Fl in
Fig. 2.

Users are then instructed to trace a sequence of key points
along the object’s shape, aided by an intuitive visualization
to facilitate the labeling process. The labeling methodology
differs slightly between DLOs and DPOs. For DLOs, key
points are roughly traced along the centerline, while for
DPOs, they are marked along the interior border, following
the object’s perimeter. This approach ensures an intuitive and
efficient labeling process for both DLOs and DPOs.

Subsequently, with knowledge of the camera pose and the
specific camera perspective parallel to the working plane, each
input key point is projected into Cartesian space as outlined
by Eq. 1 
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Where ui and vi are the labeled pixels, cx, cy , fx, and fy
are the camera parameters obtained from the camera intrinsics
matrix, cTr is the extrinsic matrix of the camera obtained by
knowing the camera position in the world coordinate frame,
and xi, yi, and zi are the world coordinates of the labeled
point.

B. Dataset Labeling via Foundation Models

1) Sparse Inputs Projection: First, the 3D points computed
in Sec. II-A2 are projected onto the specific image plane.
Indeed, with the world coordinates for the labeled points
established, each captured sample from Sec. II-A1 can be
labeled without further user input. Specifically, by employing
the inverse relation to that utilized in Eq. 1, the key points
provided by the user are projected back onto the required
image. In other words, the manual generation of key points for
each image in the dataset is replaced by the camera-equipped
robot and its associated camera-robot transformation, enabling

seamless conversion between image coordinates and world
coordinates.

2) Transforming Sparse Inputs to Dense Labels: Given
the 2D key points, dense masks are directly generated by
leveraging SAM. The SAM network consists of three primary
components: 1) an RGB image encoder, which utilizes a
ViT transformer; 2) a prompt encoder capable of accepting
bounding boxes or key points as input; and 3) a mask decoder
responsible for computing the output mask based on the
embedded image and prompt.

In this paper, we apply the readily available pre-trained
weights of SAM, thereby avoiding costly and unnecessary
fine-tuning procedures. Currently, SAM does not support
multi-object prompting. Therefore, when labeling multiple
objects is necessary, SAM must be prompted separately for
each. However, the most computationally intensive task, i.e.
the image embedding via the vision transformer, needs to be
performed only once and can be saved for subsequent use with
different prompts. In contrast, the prompt encoder and mask
decoder are relatively small and efficient models.

In practice, the raw unthresholded prediction is obtained by
SAM by setting an explicit flag. When labeling D objects,
such as D = 3 as illustrated in Fig. 2, each object undergoes
specific prompting, and the resulting masks are concatenated.
Consequently, an overall mask of dimensions H ×W ×D is
produced, where H and W represent the height and width of
the image, respectively. An additional empty mask, filled with
zeros, is appended to accommodate the background ”class”.
Subsequently, the softmax activation function is applied to
the concatenated masks to derive probability values across
the dimension D. Finally, the merged mask is obtained by
executing the argmax function along the last dimension, as
depicted in Fig. 2.

III. EXPERIMENTS

A. Data Collection

The proposed approach is validated by exploiting various
types of DOs (see Fig. 3), including cloth-like materials and
rope-like ones: Group A consists of three soft cloths with
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Fig. 3: Sets of test deformable objects.
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Fig. 4: Comparison between dense label generation employing
the sparse or �points and SAM, SAM-HQ or RITM.

uniform colors; Group B comprises two soft cloths with
complex colors and textures; Group C is composed of three
different ropes of varying colors and diameters.

The data samples are acquired using the robotic configura-
tion depicted in Fig. 1, comprising a UR5 robot manufactured
by Universal Robots equipped with an eye-in-hand OAK-1
camera provided by Luxonis. The camera resolution is set at
1080 × 1920 pixels, and it has been both intrinsically and
extrinsically calibrated relative to the robot flange.

The ellipsoidal trajectory detailed in Sec. II-A is executed
with the following parameters selected taking into consid-
eration the robot workspace and the camera field of view,
specifically: a = 0.35, b = 0.35, c = 0.35, elevation angle
steps 5, maximum elevation angle 50, heading angle steps 5.

To validate the quality of the labels, four backgrounds
(two uniform colors, two complex shapes and clutter) are
utilized to gather test data samples. Specifically, 5 samples per
background are selected resulting in 20 test samples for each
group, denoted as Test A, Test B, and Test C. Each test image
is precisely annotated by a human expert to obtain accurate
pixel-level ground truth data.

B. Dense Labels Quality

Starting from the key points annotated by a user (sparse
points), the input is propagated to the other five images of the
scenario following the proposed pipeline (Sec. II). The dense
annotation starting from the sparse input points is performed
using SAM [10]. As alternative approaches, the SAM-HQ
model [12] and RITM [13] are also investigated. Specifically,
all three methods require only the set of points as input
to produce the segmentation mask. Therefore, the same set
of user input points is provided to all methods, allowing a
comparison of their performances.
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Fig. 5: (a) Effects on the number of prompt points on Test B.
(b) Comparison of different model sizes across the test set.

The intersection over union (IoU) score is employed as a
metric for comparing the annotated masks to the ground truth
data [4]. The results comparing the accuracy of SAM, SAM-
HQ and RITM are shown in Fig. 4. Both SAM and SAM-
HQ models consistently provide accurate results, with SAM-
HQ demonstrating improved accuracy across the different test
objects. RITM often fails to accurately interpret an object’s
entire shape and may even merge different objects together.
Additionally, small errors in the projected points, for instance,
due to camera calibration inaccuracies, can lead to significant
deviations with RITM. In contrast, both SAM and SAM-HQ
effectively address these problems.

The effect of the number of input points on accuracy is
tested in Fig.5a. In the plot, Original refers to the set of input
points provided by the users, 2X and 4X denote the conditions
of sampling additional points in the middle of existing ones.
Notably, the 2X setting appears to improve accuracy, while no
real benefits are observed with 4X.

Ultimately, the impact of ViT model complexity on annota-
tion accuracy is assessed in Fig. 5b. This involves evaluating
both the base and large ViT models for both SAM and SAM-
HQ. Additionally, SAM-HQ introduces a tiny variant. The
figure highlights SAM-HQ’s enhanced performance, even with
its smallest and most resource-efficient variant.

IV. LIMITATIONS AND CONCLUSIONS

In conclusion, this paper addresses the challenge of labeling
Deformable Objects (DOs) to generate a real-world, task-
specific dataset for use in data-driven methods for robotic
perception. The proposed method offers an effective pixel-
level labeling approach for DOs in images, utilizing sparse
annotations of key points as a starting point. The utilization
of the Segment Anything Model (SAM) enables us to obtain
accurate dense masks without the need for specific fine-
tuning objectives or domain-specific knowledge. Moreover,
the proposed approach drastically improves the usability while
reducing the labeling effort.

In future work, we will investigate implementing au-
tonomous regeneration of scene configurations using a robotic
arm to increase data variance during sample collection.
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