
Generalizable Whole-Body Global Manipulation of Deformable Linear
Objects by Dual-Arm Robot in 3-D Constrained Environments

Mingrui Yu1, Kangchen Lv1, Changhao Wang2, Yongpeng Jiang1, Masayoshi Tomizuka2 and Xiang Li1

Start configuration Goal configuration Whole-body manipulation

Dual-arm robot

Obstacles

DLO

Fig. 1. Illustration of the task: whole-body global manipulation of DLOs by a dual-arm robot in 3-D constrained environments. Given the environment and
goal configuration, the proposed approach achieves collision-free moving and shaping of the DLO from start to goal configuration, during which the whole
body of the DLO and robot is considered.

Abstract— Constrained environments are common in practical
applications of manipulating deformable linear objects (DLOs).
This task is high-dimensional and highly constrained owing to
the highly deformable DLOs, dual-arm robots with high degrees
of freedom, and 3-D complex environments. Furthermore,
accurate DLO models needed by planning are often unavailable,
resulting in unreliable planned paths. This article focuses
on the global moving and shaping of DLOs in constrained
environments by dual-arm robots. The main objectives are 1)
to efficiently and accurately accomplish this task, and 2) to
achieve generalizable and robust manipulation of various DLOs.
To this end, we propose a complementary framework with
whole-body planning and control using appropriate DLO model
representations. Experiments demonstrate that our framework
can accomplish considerably more complicated tasks than exist-
ing works, with significantly higher efficiency, generalizability,
and reliability. The full paper and video are available on
https://mingrui-yu.github.io/DLO_planning_2.

I. INTRODUCTION

Deformable linear objects (DLOs), such as cables, wires,
ropes, and rods, are prevalent in various everyday scenarios
[1]. Many research works have been devoted to robotic
manipulation of DLOs [2], [3], but most of them are
designed for unobstructed environments without other objects
[4]–[13]. This article focuses on DLO manipulation in
constrained environments. Figure 1 illustrates an example
of the manipulation task considered in this article, which
constitutes a general problem in DLO manipulation, i.e., the
task of a dual-arm robot manipulating a DLO from a start
configuration to a desired (goal) configuration in a complex
constrained environment with non-convex obstacles. This task
involves both moving and shaping of the DLO by the robot,
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necessitating both accurate final manipulation results and
collision-free moving paths for the DLO and robot body.

This task is high-dimensional and highly constrained owing
to the deformable nature of DLOs, high degrees of freedom
(DoFs) of dual-arm robots, 3-D complex environment, under-
actuated nature of the system, and requirement of long-
distance movements. Consequently, global planning becomes
indispensable but also extremely challenging. Some previous
works have tried this task by offline planning and open-loop
executions. The most critical issue is that it is difficult to
obtain accurate DLO models needed by planning in practical
applications, given the significant diversity and nonlinearity of
DLOs. Thus, directly executing planned paths may fail owing
to the inevitable DLO modeling errors. However, most works
assumed the acquisition of sufficiently accurate DLO models
either through analytical modeling [14]–[18] or learning from
pre-collected data [19], taking no account of adaptability to
new DLOs. Furthermore, previous works usually simplified
the challenging planning problem or only partially addressed
it, for example, by regarding the end-effectors as floating
grippers without considering arm bodies [14]–[17], relying on
time-consuming physical engines [17] or pre-built roadmaps
[18], or over-simplifying the representations of DLOs [20].

This article proposes a novel framework for global whole-
body collision-free manipulation of DLOs in constrained
environments. We aim to address two key questions:

1) How to both efficiently and accurately accomplish this
high-dimensional task subject to multiple constraints,
such as the stable deformation, overstretch prevention,
closed-chain movements, and collision avoidance?

2) How to enhance the robustness and generalizability of
the proposed approach to various real-world DLOs for
which accurate models are difficult to obtain?
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Fig. 2. Overview of the framework. (a) Relationships between the global planner, local controller, and their corresponding DLO models in the proposed
complementary framework. (b) The proposed manipulation framework with whole-body global planning and closed-loop executions.

Our solution is a complementary framework that integrates
whole-body global planning and local control (see Fig. 2):
the former efficiently finds feasible (but imperfect) solutions
and the latter improves the robustness and accuracy of
manipulations. The contributions are highlighted as follows:

1) We establish an efficient path planning algorithm for
global collision-free manipulation of DLOs by dual-arm
robots, which considers the full state space of both the
DLO and arms and guarantees the satisfaction of all
necessary constraints.

2) We implement an MPC for smoothly tracking DLO
and robot paths, which includes hard constraints for
local obstacle avoidance and overstretch prevention in
general 3-D environments.

3) We propose a complementary framework combining
global planning and local control, in which the planner
relies on a simplified DLO model to efficiently find
feasible solutions, and the controller uses real-time
feedback to closed-loop compensate for planning er-
rors during tracking. It achieves robust, accurate, and
collision-free manipulation of various DLOs in complex
constrained environments.

We carry out exhaustive simulations and real-world ex-
periments to demonstrate that our framework can effectively
address the open challenges in dual-arm manipulation of
DLOs in constrained environments, such as those pertaining
to high dimensionality, multiple constraints, long-distance
movements, and generalization on various DLOs. To the best
of our knowledge, this study is the first successful attempt at
achieving whole-body collision-free manipulation of various
types of DLOs in real-world 3-D constrained environments.
The proposed approach achieves a 100% planning success
rate among thousands of trials with an average time cost of
less than 15 second (such as the simulated task in Fig. 1), and
a 100% manipulation success rate among 135 real-world 3-D
tests on five DLOs of different properties with an average
execution time of less than 1 minute.

This work is an extension of our previous work [21]. The
improvements include: 1) employing a new DLO energy
model, the discrete elastic rod model, to account for twist
energy and gravity effects; 2) further optimizing the plan-
ning algorithm to improve the success rate, efficiency, and
path quality; 3) extending the controller to a long-horizon

MPC with hard constraints for obstacle avoidance; and 4)
conducting more comprehensive simulation studies and 3-D
real-world experiments.

II. OVERVIEW OF THE FRAMEWORK

In this section, we briefly overview the proposed framework.
Please refer to the full paper for the details. Our core
concept is to use a moderately coarse DLO model to plan a
path that closely approximates real-world conditions without
significantly increasing the time cost. Subsequently, we use
closed-loop control with an adaptive DLO motion model to
compensate for the residual modeling errors.

Global planning: During the planning phase, we consider
all constraints of configurations based on the assumed DLO
model, including the stable DLO configuration constraint,
closed-chain constraint, and collision-free constraint. We use a
rapidly-exploring random tree (RRT) framework for this high-
dimensional planning problem, in which we use projection
and rejection methods to ensure all constraints are satisfied.
We employ the discrete elastic rod (DER) model [22] for
planning rather than data-driven forward predictive models
of DLOs, such as [19], since the latter may suffer from
accumulated errors. To generalize to various types of DLOs,
we use a simplified model that assumes naturally straight
and isotropic DLOs in planning. Such a model involves only
three scalar parameters, and we design an efficient strategy
to coarsely identify them through a simple trajectory. This
simplification also helps improve the planning efficiency.

Local control: During the planning phase, the following
simplifications are made in exchange for realizability and
high efficiency: 1) we use a simplified DER model for
isotropic and naturally straight DLOs; 2) the discretization
of the DLO is coarse; and 3) the identification of the model
parameters is coarse. Thus, if the planned robot path is directly
executed in an open-loop manner, the DLO may not move
exactly as expected, potentially failing to reach the goal
configuration owing to collisions or deviations. Consequently,
we use closed-loop control to compensate for the residual
modeling errors and achieve robust and accurate manipulation.
We apply our previously proposed DLO Jacobian model
[23] for control. This data-driven model only assumes the
elasticity of the DLO and quasi-static manipulation, so the
controller is more general and locally precise compared with
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Fig. 3. Task 1, 2, 3 in the real-world experiments, and corresponding manipulation processes using the proposed method. For each task, the pictures
in the second row are visualizations by the Rviz, in which the blue lines and translucent robots indicate the planned waypoints, and the red lines and
non-translucent robots indicate the real-time configurations. We test on five different DLOs. Here we only show the tests for DLO 1.

TABLE I
PERFORMANCE OF THE PROPOSED MANIPULATION METHOD IN THE REAL-WORLD EXPERIMENTS.

Task Planning time (s) Manipulation mode Success rate Final task error (mm) Collision time (s) Execution time (s)

1 0.90 ± 0.83 Open-loop 43/45 16.15 ± 9.68 0.51 ± 0.78 41.31 ± 2.85
Closed-loop 45/45 9.44 ± 5.03 0.0 ± 0.0

2 0.83 ± 0.46 Open-loop 45/45 21.77 ± 10.06 1.58 ± 4.18 42.79 ± 4.41
Closed-loop 45/45 10.38 ± 4.34 0.0 ± 0.0

3 3.82 ± 3.04 Open-loop 39/45 14.46 ± 8.07 2.22 ± 2.31 53.12 ± 6.07
Closed-loop 45/45 9.52 ± 4.45 0.004 ± 0.029

the planner. The complementary relationship between the
planner and controller is illustrated in Fig. 2(a). We formulate
the controller as an MPC with hard collision constraints
to track the planned path as guidance and locally avoid
obstacles. Other constraints, such as the overstretch and robot
DoFs constraints, can also be easily incorporated. The overall
manipulation process is illustrated in Fig. 2(b).

III. RESULTS

We conduct simulations and real-world experiments to
demonstrate that our method can efficiently, robustly, and
accurately accomplish tasks that the existing works cannot
realize. Please refer to the full paper for all results.

Simulation: We design four tasks with different obstacles,
start/goal configurations, and DLO properties for exhaustive
quantitative testing. The results demonstrate that 1) our global
planner is highly robust, as the planning success rate is 100%
for all 800 trials; 2) the planner is highly efficient, as the
average time for finding a feasible path is about 1 to 3 s
for Tasks 1 to 3 and about 10 s for the challenging Task 4.
3) our method can robustly and precisely accomplish such
global manipulation tasks, as all 400 tests are successful and
the final task errors are less than 0.5 mm; 4) our method
can effectively avoid collision when using imprecise DLO
models, as collision is minimal with an average collision time

of less than 0.05 s; and 5) the replanning module is invoked
only once among all 400 tests.

Real-world experiments: We test on five different DLOs
with lengths ranging from 0.32 m to 0.72 m, diameters ranging
from 7 mm to 11 mm, and material stiffnesses ranging from
stiff (TPU elastic) to soft (hemp rope). Before manipulation,
the DER parameters of the DLOs are coarsely identified. We
design three 3-D tasks for evaluation, as shown in Fig. 3.
The results are summarized in Table I, which indicate that
1) the planning is efficient, as the average time for finding a
feasible path is only 3.82 s in the most challenging Task 3; 2)
the proposed closed-loop manipulation framework is robust,
as the manipulation success rate of the closed-loop manner
is 135/135, while that of the open-loop manner is 127/135;
3) the closed-loop manner improves the final task precision
(reducing the average error over the three tasks from 17.46 to
9.78 mm), as the real DLOs exhibit elastoplastic deformation
during manipulations and may not reach exactly the same
configuration between different open-loop executions; 4) the
closed-loop manner effectively avoids unexpected collisions,
as collision occurs only once (0.2 s) during all closed-loop
manipulations, while the average collision time of open-loop
manipulations in Task 3 is 2.22 s. Additionally, no replanning
is invoked in any of the manipulations. The average execution
time of Task 3 is 53.12 s.
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