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Abstract— We have seen much recent progress in task-specific
clothes manipulation, but generalizable clothes manipulation
is still a challenge. Clothes manipulation requires sequential
actions, making it challenging to generalize to unseen tasks.
Besides, a general clothes state representation method is crucial.
In this paper, we adopt language instructions to specify and
decompose clothes manipulation tasks, and propose a large
language model based hierarchical learning method to enhance
generalization. For state representation, we use semantic key-
points to capture the geometry of clothes and outline their
manipulation methods. Simulation experiments show that the
proposed method outperforms the baseline method in terms of
success rate and generalization for clothes manipulation tasks.

I. INTRODUCTION

People have long anticipated that an intelligent household
robot can free them from the tedium of organizing and
storing clothes. Toward this goal, the robot should perform
a broad range of clothes manipulation tasks, such as “fold
the T-shirt for storage” and “hang the skirt on the hanger”
(Fig. 1). Recently, learning task-specific clothes manipulation
skills has been widely investigated [1], [2]. However, these
methods often fail to generalize to unseen tasks with new
object categories or new requirements such as different
folding direction, position, and times. For example, it’s
difficult to transfer the skill from a T-shirt to a skirt or from
folding a towel in half once to folding it twice. However,
generalizable clothes manipulation poses two challenges.
Clothes manipulation tasks typically require sequential ac-
tions, where the action order is crucial for task completion.
Thus, generalizing to unseen tasks poses higher requirements
for task planning. Besides, clothes are characterized by high
dimensionality within their state space [3]. Moreover, the
geometric structures of different clothes vary significantly.
Thus, an effective and general state representation method is
crucial.

For generalizable clothes manipulation, we develop a
hierarchical learning method and decompose clothes manip-
ulation into three levels of hierarchy: planning, grounding,
and action (Fig. 2). In the planning layer, we adopt language
instructions to specify clothes manipulation tasks and use a
large language model (LLM) for task planning. Compared
to goal images, language instructions provide a more in-
tuitive and flexible way of specifying tasks. Furthermore,
large language models can provide commonsense knowl-
edge for task planning and enhance the generalization [4].
Specifically, we prompt the LLM to decompose the given
language instruction into sequential sub-tasks. Each sub-task
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Fig. 1: Generalizable Clothes Manipulation. Our proposed method enables
generalizable clothes manipulation and is applicable to a wide range of
clothes manipulation tasks and object categories.

is described by predefined action primitives and contact point
descriptions. We use the LLM to condense actions used in its
task planning to action primitives and benefit task planning.
Contact point descriptions are geometric features of clothes
like “left sleeve”.

In the grounding layer, we address state representation
and visually ground contact point descriptions. Clothes has a
predefined structure with significant geometric features, such
as sleeves and collars. Semantic keypoints of these geometric
features can capture the geometry of clothes and define
how they can be manipulated [5]. Thus, we adopt semantic
keypoints as the cloth state representation and contact point
candidates. To detect effective semantic keypoints, we use
a masked auto-encoder [6] to learn a powerful spatiotem-
poral representation through reconstructing masked image
sequences. The pre-trained spatiotemporal representation can
handle occlusion since masking is one form of occlusion.
We then train the keypoint detector based on the pre-trained
representation. After detecting keypoints, visual grounding
of contact points is achieved through selecting semantic
keypoints based on their semantic meaning. Finally, the
action layer will generate trajectories conditioned on action
primitives and contact points.

To evaluate the proposed hierarchical learning method,
we extend SoftGym [7] benchmark and conduct simulation
experiments. Our proposed method outperforms the baseline
method in seen and unseen tasks. Hierarchical learning
enables the robot to learn transferable language and visual
concepts across clothes manipulation tasks, enhancing gen-
eralization. In summary, our contributions are as follows:

• We use language instructions for task specification and
a large language model for task planning, enabling
generalizable clothes manipulation;

• We propose a semantic keypoints based clothes state
representation method, leveraging a masked autoen-
coder to accurately detect keypoints under occlusion.
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Fig. 2: Hierarchical learning method. We decompose the problem of generating action trajectories for clothes manipulation into task planning, visual
grounding, and action generation, which enables the robot to learn transferable language and visual concepts across clothes manipulation tasks.

II. RELATED WORK

Learning for Deformable Object Manipulation. Learn-
ing methods have been used to equip the robot with task-
specific deformable object manipulation abilities such as
rope rearrangement [8], [9], cloth folding [1], [10], cloth
flattening [11], [12], and bag opening [13], [14]. Some goal-
conditioned approaches use goal images to specify different
tasks for multi-task learning of deformable object manipula-
tion [15], [16]. However, the task diversity is still limited and
it’s difficult to generalize to new goals. Unlike previous work,
we adopt language instructions to specify and decompose
different tasks for generalizable clothes manipulation.

Language-conditioned object manipulation. Language
provides an intuitive interface in human-robot interaction and
can explicitly capture the transferable concepts between dif-
ferent manipulation tasks. Thus, language-conditioned object
manipulation has been widely investigated. Early work fo-
cuses on how to make the robot understand language instruc-
tions and perform manipulation tasks [17], [18]. Recently,
large language models have been employed in language-
conditioned manipulation to enhance generalization [19]–
[21]. However, previous methods are limited to rigid objects.
In this paper, we extend language-conditioned manipulation’s
application scenarios to deformable objects.

State representation of deformable objects. Given the
high-dimensional state of deformable objects, an effec-
tive state representation method is necessary. To simu-
late deformable objects, particles and mesh representations
have been explored [22]–[24]. Compared with particles and
meshes, keypoints representation has lower dimensionality,
leading to more effective policy learning [25]. Keypoints
representation is also suitable for clothes, which has a pre-
defined structure with significant geometric features. In this
paper, we explore how to detect effective semantic keypoints
as the state representation of clothes.

III. METHOD

In this work, we propose a hierarchical learning method
(Fig. 2) that formulates the problem of generating trajectories
{τi} for clothes manipulation task specified by a given
language instruction s into three levels of hierarchy: (1) Task
planning – inferring a sequence of sub-task {wi} conditioned

on the language instruction s, wi = ai(di), ai refers to the
action primitive and di refers to the language description of
the contact point. (2) Visual grounding - for each sub-task
wi, detecting keypoints Pi from observation Ii as the state
representation, and grounding contact point ci conditioned
on keypoints Pi and contact point description di. (3) Action
generation - for each sub-task wi, generating a trajectory τi
conditioned on the action primitive ai and the contact point
ci. We make two assumptions: the clothes manipulation is
quasi-static and not long-horizon.

A. Task Planning

LLMs are utilized to enhance robot task planning due
to their powerful commonsense knowledge from extensive
internet-scale training data. However, previous work is lim-
ited to action primitives such as picking and placing, moving,
and opening. Such action primitives are not sufficient for
generalizable clothes manipulation. Thus, we utilize the
LLM with a chain of thought prompting [26] to define
action primitives. The LLM is prompted to (1) provide
examples of clothes manipulation tasks; (2) decompose these
examples into basic actions; (3) summarize the actions used
in step (2) and identify action primitives. In this way, we
identify action primitives, including grasp, release, moveto,
rotate, press, and pull. These action primitives reflect LLM’s
commonsense knowledge, enhancing LLM’s task planning.
To generate sub-tasks, we then prompt the LLM with some
examples consisting of language instructions paired with
desirable sub-tasks sequences.

B. Visual Grounding

Upon obtaining a sub-task wi = ai(di) from task plan-
ning, our visual grounding layer will ground the contact
point description di conditioned on current observation Ii.
For sim-to-real transferring, we utilize depth images as
observation. Given that clothes has a predefined structure
with significant geometric features, such as sleeves and
collars, identifying semantic keypoints of these features can
effectively capture the clothes’ geometry and outline possible
manipulation methods. Thus, our visual grounding layer is
based on semantic keypoints detection. We first leverage a
masked autoencoder as a spatiotemporal learner to establish



TABLE I: Simulation Experiment Results. The average success rates (%) on testing tasks. The best performance is in bold.

Method seen easy tasks seen medium tasks seen hard tasks

corner folding half folding diagonal folding object hanging object flattening object placement T-shirt folding trousers folding all corner folding

CLIPORT [18] 86.7 70.0 76.7 93.3 33.0 93.3 80.0 66.7 90.0
Ours 100.0 96.7 100.0 96.7 53.3 93.3 100.0 86.7 96.7

Method unseen easy tasks unseen medium tasks unseen hard tasks

corner folding half folding diagonal folding object hanging object flattening object placement skirt folding half folding twice diagonal folding twice

CLIPORT [18] 76.7 60.0 70.0 76.7 0.0 80.0 0.0 0.0 0.0
Ours 100.0 96.7 96.7 83.3 50.0 93.3 83.3 93.3 96.7

a powerful latent space to handle occlusion. The core idea is
that masking acts as a form of occlusion, and recovering the
masked areas requires the model to infer spatial structures
of clothes from partial observations. Then, we fine-tune the
masked autoencoder with an additional decoder aimed at
detecting effective keypoints. As Fig. 3 shows, our keypoint
detector can detect effective semantic keypoints of clothes
under occlusion. After detecting semantic keypoints from the
depth image, the visual grounding of the contact point is
achieved by selecting keypoint based on its description.

(a)

(b)

Fig. 3: Semantic keypoints detection. (a) Semantic keypoints detection
results of flat objects. (b) Semantic keypoints detection results of objects
that become occluded after robotic manipulation.

C. Action Generation

After grounding the contact point description di to its
position ci, our action model generates an action trajectory
τi conditioned on the action primitive ai. The action model
is based on manually designed rules.

IV. EXPERIMENTS

To evaluate the proposed hierarchical learning method
on generalizable clothes manipulation, we compared the
proposed method with the end-to-end baseline method on a
set of clothes manipulation tasks in simulation environment.

A. Simulation Experiment Setup

We choose CLIPORT [18] as the baseline method, which
represents the typical end-to-end algorithm for language-
conditioned manipulation policy learning. CLIPORT relies
on a pre-trained vision-language model.

We extended SoftGym benchmark to 30 common clothes
manipulation tasks. These tasks can be mainly divided into:
(1) folding clothes in different way (corner folding, half fold-
ing, and diagonal folding); (2) folding clothes for storage; (3)
flattening crumpled clothes; (4) hanging clothes on a hanger;
(5) placing clothes and storing them. The clothes categories
include T-shirts, trousers, skirts, and towels. Each category

of clothes has over 35 instances with different shapes and
sizes. Besides, tasks are categorized by complexity into easy,
medium, and hard tasks based on action steps. Easy tasks
involve up to 4 steps, middle tasks require 5 to 7 steps,
and hard tasks need 8 steps or more. Only half of tasks
are seen during training through examples in the prompt or
demonstrations. Unseen tasks involves new object categories
and new requirements like folding direction, position, and
times.

We compare the success rate of different methods on the
above tasks. The success metric is the mean particle position
error between the clothes states achieved by policy and an
oracle demonstrator. We define a task as a success if the
mean particle position error is less than the diameter of a
particle in the simulation.

B. Simulation Experiment Results

The experiment results are shown in TABLE I. Over-
all, our method outperforms CLIPORT in seen and un-
seen tasks, especially when the task complexity increases.
CLIPORT can generalize to unseen easy tasks and some
unseen medium tasks. The pre-trained vision-language model
enable CLIPORT to capture the similarity between different
tasks (e.g.“hang the T-shirt” and “hang the skirt”). But it’s
difficult to learn action sequences of hard tasks in an end-
to-end manner. The learned policies are not generalizable.
In contrast, hierarchical learning can learn transferable lan-
guage and visual concepts across clothes manipulation tasks.
LLM can complete the task planning of unseen tasks and
decompose unseen tasks to predefined action primitives.
Additionally, semantic keypoints are independent of specific
tasks, which can be utilized to ground contact points of
unseen manipulation tasks.

V. CONCLUSION

In this paper, we propose a hierarchical learning method
for generalizable clothes manipulation, where language in-
structions and a LLM are used for task specification and
planning. To represent the s clothes effectively, we use
a masked autoencoder to detect semantic keypoints under
occlusion. Semantic keypoints are used to ground contact
point of manipulation tasks. Simulation experiment results
show that proposed hierarchical learning method outperforms
the baseline method in success rate and generalization.
Proposed method can generalize to unseen tasks with new
object categories or new requirements. For future work, we
will explore the generalization on object instances and close-
loop task planning of clothes manipulation.
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