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Abstract— Controlling the shape of deformable linear objects
using robots and constraints provided by environmental fixtures
has diverse industrial applications. In order to establish robust
contacts with these fixtures, accurate estimation of the contact
state is essential for preventing and rectifying potential anoma-
lies. However, this task is challenging due to the small sizes of
fixtures, the requirement for real-time performances, and the
infinite degrees of freedom of the deformable linear objects. In
this paper, we propose a real-time approach for estimating both
contact establishment and subsequent changes by leveraging
the dependency between the applied and detected contact force
on the deformable linear objects. We seamlessly integrate this
method into the robot control loop and achieve an adaptive
shape control framework which avoids, detects and corrects
anomalies automatically. Real-world experiments validate the
robustness and effectiveness of our contact estimation approach
across various scenarios, significantly increasing the success rate
of shape control processes.

I. INTRODUCTION

Controlling the shape of deformable linear objects (DLOs)
with robot manipulators has a wide range of industrial
applications, such as cable routing [1], wire-harness assem-
bly in manufacturing [2], or manipulation of endoscopes
in robotic surgeries [3]. To provide additional constraints
on DLOs, contacts from environmental fixtures are often
utilized in these processes [1], [4]–[8]. Reliable contact
state estimation between fixtures and DLOs is crucial for
prevention of potential anomalies such as misalignment or
insufficient pushing, and for enhancing the overall robustness
of the shape control system. One typical fixture which has
been widely used in manufacturing is clip-like fixtures. Due
to their own deformations, clip-like fixtures introduce a
dynamic and multi-stage contact process (see Fig 1): as the
DLO advances towards the clip, it initially makes contact
with the clip’s opening. Subsequently, as the DLO is pushed
inward, the clip is forced to open to let the object in. Once
the object is securely fastened inside the clip, the contact is
detached, unless the object moves further and collides with
the rear part of the clip.

Existing contact estimation approaches typically rely on
visual perception or robot motion information [9]–[11].
However, they are not reliable to be applied to contacts
in clip fixing scenarios. Firstly, the small size of fixtures
and the resulting limited displacements of robots during clip
fixing leads to requirements for precise segmentation as well
as strict real-time responses. As a result, visual perception
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Fig. 1: Clip fixing and DLO deformation. (a) Top views. From
top to bottom: contact-insertion-fixed-overforce movement. (b) Left
views. Top: insertion; bottom: fixed.

algorithms used in prior works [4]–[6] are not practical due to
their dependence on slower image processing. Secondly, the
contact is established not with the robot but with the DLO it-
self, which makes direct contact measurement impossible [4].
In the case of a DLO, its contact state lags behind the robot
motion due to the deformation. For example, in Fig 1(a),
despite that we have stretched the grasped DLO to be tense,
noticeable deformation still exists, and the two robots may
continue advancing even when DLO is still blocked.

Inspired by the pivotal role of tactile information in human
perception of deformable objects, we present a real-time
method based on contact forces that can accurately estimate
contact state of DLOs subject to various environmental
constraints. We then integrate the contact state estimation
method into the DLO shape control framework of two robotic
manipulators, which dynamically adjusts its parameters in
case of anomalies.

II. METHODOLOGY

A. Clip Fixing Process
We formulate the clip fixing process based on the clip-

fixing skill introduced in our prior work [1]. As is shown
in Fig 2, the movement of robots as well as the cable is
described in an object-centered coordinate frame. The clip
fixing process is defined as a directed transition graph of
manipulation primitives (MPs). In contrast to [1], we redefine
every MP to consist solely of a desired feedforward force
f controlled under an adaptive impedance controller [12],
without controlling linear velocity ẋd . Initially, both robots
securely grasp each end of a DLO segment. As two robot
exert forces fstretch = [± fstretch,0,0]T in the opposite di-
rection, the segment is stretched until it becomes tense
(Fig.2(a)). fstretch is maintained throughout the subsequent
stages. Following this, robots guide the segment with a push-
ing force fpush = [0, fpush,0]T to establish contact with the
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Fig. 2: Clip fixing process. The red curve represents the DLO. The black fixture represents the clip. The gray polygon represents the robot
hand and finger tips. (a), (b), (c) and (d) in the first row describe the ideal clip fixing process. (e), (f), (g) in the second row describe the
failures which may happen at different stages. The tendency of displacement (green curve) and contact force (blue curve) are depicted
next to each failure. For simplicity, the hand is omitted in the second row.

clip (Fig.2(b)). Upon contact detection, instead of applying
a constant pushing force, fpush rises gradually from zero
: fpush(0) = 0 and d fpush(t)

dt > 0 (Fig.2(c)). Once the DLO
segment is fully inserted, the robots cease applying forces
and further motion (Fig.2(d)).

Although experiments in [1] have substantiated the effec-
tiveness of the clip-fixing skill above, there exists some issues
which may diminish the framework’s robustness:

• Missed contact (Fig 2(e)). If the grasped DLO passes
over the clip opening, no contact is established between
the object and the clip. Consequently, the DLO contin-
ues to move forward alongside the clip.

• Entry blockage (Fig 2(f)). If the grasped DLO moves
below the clip opening, it will be blocked by the fixture
base. Contact is maintained once established until the
skill exits.

• Overforce movement (Fig 2(g)). Excessive applied
force fpush or a delay in force removal after insertion can
cause the DLO to continue moving forward, eventually
colliding with the clip’s rear end.

We notice that these anomalies happen at different stages
of the clip fixing process with different contact patterns, and
can be detected and avoided by accurate estimation of DLO’s
current contact state with the clip.

B. Contact Estimation

In all MPs following stretching, the grasped DLO is
stretched by fstretch and at the same time pushed by fpush
into the clip. Once it establishes contact with the clip, it
is also under contact force fc. The general dynamics of the
DLO in y direction can be described as

m · ẍ(t) = fpush − fc(t), (1)

which can be conceptualized as a system that takes fpush as
input and generates outputs in the form of ẍ and fc. We define
a contact establishment indicator (CEI) and a contact change
indicator (CCI) to estimate the initial contact establishment
and following contact changes respectively by analyzing the
interrelationship between the input and output.

1) Contact Change Indicator (CCI): As shown in
Fig 1(a), the insertion MP describes the process after the
DLO has contacted the clip until it is inserted in and the
contact terminates. Inspired by the definition of stiffness
(ratio of the resulting deformation to the applied force), we
define an indicator for describing the contact change in this
process as the rate of change of the resulting contact force
to the feedforward force:

ρc =
d fc

d fpush
. (2)

To establish a robust relationship between fc and fpush,
we set two prerequisites for the insertion MP. Firstly, the
grasped DLO is stretched to be tense and already in a solid
contact with the clip. Thus, the deformation of DLO can
be neglected, i.e., θ is almost a constant. In addition, after
the contact MP, robots are forced to pause moving until
the velocity is close to zero before the insertion MP starts.
These prerequisites ensure that at each time point between
establishing contact and being inserted into the clip, the DLO
can be approximated as quasi-static and the acceleration
could be neglected so that ρc ≈ 1.

As fpush(t) rises, an abrupt drop in ρc occurs at the mo-
ment when the DLO is inserted into the clip and the contact
disappears. To capture this moment, we make prediction of
ρc in the future: at each time point t, we consider ρc(t) as a
random variable following a Gaussian distribution

ρc(t)∼ N (µt−1, σ
2
t−1), (3)

where µt−1 and σt−1 represent the cumulative average and
standard deviation until time step t − 1, respectively. When
the contact remains stable, ρc(t) should conform to our pre-
diction. The instant of a contact change, whether a termina-
tion or a new establishment, is detected when ρc(t) deviates
from the prediction, i.e., when it falls outside a confidence
interval (CI) specified by the Z-score. The condition for
contact detachment is formulated as ρc(t)< µt−1 −Z ·σt−1.
Similarly, the re-establishment condition is formulated as
ρc(t)> µt−1 +Z ·σt−1.

2) Contact Establishment Indicator (CEI): Given the first
prerequisite of the insertion MP that θ should be quasi-static,
we define an indicator for describing whether there is a solid



contact established between the clip and the DLO in the
contact MP. This contact establishment indicator, denoted
as ρe, is defined as the ratio of the contact force to the
feedforward force:

ρe =
fc

fpush
. (4)

In theory, the moment when contact is established can be
detected by simply measuring whether fc > 0. In practice,
however, the contact force detected by robots f ext

c (t) is usu-
ally non-zero as it includes additionally noise and especially
measurement error arising from acceleration f ext

c (t) = fc(t)+
me · ẍ(t). Before any contact is established, the acceleration
ẍ(t) = fpush

m is relatively high and the measurement error
cannot be ignored. This leads to the modified form of (1):

(m+me) · ẍ(t) = fpush − fc(t). (5)

As the deformation of the clip grows, both fc(t) and CEI
rises. The second-order differential system in (5) will even-
tually reach an equilibrium point where fc(t) = fpush and
ρe = 1, which marks the moment when θ becomes stable
and a solid contact is established. In practice, we formulate
the contact establishment condition with a threshold E that
ρe > E.
C. Enhanced Shape Control

Based on CEI and CCI, the ideal clip fixing process
as well as anomalies introduced in subsection II-A can
be characterized by the contact force profile, more specifi-
cally, as sequences of contact establishment and detachment
ζ = {0,1}n, where 0 represents non-contact states and 1
represents established contact. The ideal clip fixing process
is profiled as ζ ∗ = [0,1,0]. The contact state sequences of
each MP and anomaly are depicted in Fig 2.

We then combine the improved clip fixing skill with the
shape tracking skill developed in our prior work [1] to
form an enhanced adaptive shape control framework which
could detect and correct anomalies automatically based on
feedback provided by contact sequences. Arriving at one
fixture ψi, the clip fixing skill starts and runs in iterations. In
the first iteration, MP parameters are sampled randomly from
respective uniform distributions. After each iteration, in case
when anomalies are detected, the upper and lower ranges
of the parameter distributions are updated respectively based
on the difference between ζt and ζ ∗, and MP parameters are
sampled again from the updated distribution. This process is
repeated until ζ ∗ is detected.

III. EXPERIMENTS

To evaluate the accuracy of the proposed contact es-
timation approach , we use two 7 DOF Franka Emika
Panda robots for real-world experiments, both of which
are equipped with joint torque sensors and provide 6-axis
force torque estimation at the end-effectors. Throughout
this process, all the fixtures remain anchored to the desk,
maintaining constant poses.

A. Evaluation of Contact Change Detection
We evaluate the performance of CCI in comparison to

two other intuitive indicators for contact change detection,
namely, a constant contact threshold Fc and the contact force
change rate d fc/dt, across various setups.

Across different rising Firstly, we compare performances
under three different growing patterns of fpush(t), each
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Fig. 3: Various settings for comparing contact change detection. (a)
Different growing patterns of the fpush(t). (b) Cables with different
radius. (c) Various clip fixtures and sizes (Length x Height (cm)).

approximating a linear function, a logarithm function and a
exponential function, as shown in Fig 3(a). We collect contact
data by performing overforce movement with every growing
pattern in Fig 3(a) at three different fixture poses P1, P2, and
P3, with each setting repeated for 10 times. The number of
successful contact change detection using each indicator is
summarized in Table I. Overall, ρc achieves equal or higher
success rate across different rising patterns.

TABLE I: Contact change detection accuracy I.

Fc d fc/dt ρc (ours)
P1 P2 P3 P1 P2 P3 P1 P2 P3

linear 10 10 9 10 10 9 10 10 9
log 10 10 9 10 10 5 10 10 9
exp 10 1 4 9 1 2 10 10 5
success 1.0 0.7 0.73 0.96 0.7 0.53 1.0 1.0 0.83

Across different cables and clips Furthermore, we
compare their performance on cables with different radius
(Fig 3(b)) and clips of different sizes and opening directions
(Fig 3(c)). The number of successful contact change detec-
tion using each indicator is listed in Table II. As the radius
becomes smaller and the contact change turns less obvious,
e.g. in the case of cable S with clip C1, ρc preserves the
most robust performance.

TABLE II: Contact change detection accuracy II.

Fc d fc/dt ρc (ours)
C1 C2 U1 C1 C2 U1 C1 C2 U1

L 10 0 10 10 10 10 10 10 10
M 10 0 10 10 10 10 10 10 10
S 4 0 0 4 0 0 10 10 0
success 0.48 0.71 0.88

Finally, we evaluate the improvements our contact es-
timation approach brings to the shape control framework
by comparing the success rate with and without contact
estimation integrated. Four fixtures of three different types
are mounted securely on the harness board. Each fixture is
designed to have a slightly different offset δz in its z axis.
These offsets are hard to be detected by visual observations
but may lead to an anomaly in clip fixing. The results of
clip fixing at each fixture are listed in Table III. For the
complete shape control process, please refer to the video at
https://youtu.be/Ph9GsCaEKEg.

TABLE III: Shape control experiments

U1 (δz =-10mm) C1 (δz =3mm) C3 (δz =5mm) C3 (δz =0mm)
With Success Success Success Success
Without Missed Contact Entry Blockage Entry Blockage Success
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