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Abstract— Robotic Assisted Feeding (RAF) addresses the
fundamental need for individuals with mobility impairments to
regain autonomy in feeding themselves. The goal of RAF is to
use a robot arm to acquire and transfer food to individuals from
the table. Existing RAF methods primarily focus on solid foods,
leaving a gap in manipulation strategies for semi-solid and
deformable foods. This study introduces Long-horizon Visual
Action (LAVA) based food acquisition of liquid, semisolid,
and deformable foods. Long-horizon refers to the goal of
“clearing the bowl” by sequentially acquiring the food from
the bowl. LAVA employs a hierarchical policy for long-horizon
food acquisition tasks. The framework uses high-level policy
to determine primitives based on food types. At the mid-
level, LAVA finds parameters for primitives using vision. To
carry out sequential plans in the real world, LAVA delegates
action execution which is driven by Low-level policy that uses
parameters received from mid-level policy and behavior cloning
ensuring precise trajectory execution. We validate our approach
on complex real-world acquisition trials involving granular,
liquid, semisolid, and deformable food types along with fruit
chunks and soup acquisition. Across 46 bowls, LAVA acquires
much more efficiently than baselines with a success rate of
89± 4%, and generalizes across realistic plate variations such
as different positions, varieties, and amount of food in the bowl.
Code, datasets, videos, and supplementary materials can be
found on our website.

I. INTRODUCTION

For individuals limited mobility or disabilities, self-
feeding can be a daunting task, underscoring the need for
Robotic Assisted Feeding (RAF) [1] systems, to enhance
independence and quality of life as well as reducing caregiver
burden. Dealing with various foods—from granular cereals
to semi-solid food such as yogurt and deformable food
items such as tofu, without breakage or deformation presents
significant challenges for RAF [2], [3]. Traditional RAF
methods have relied on pre-set strategies for specific tasks
like skewering [4]–[7], bite transfer [4], [8], [9], and scoop-
ing [2], [10], which falls short in complex feeding scenarios
akin to human feeding actions. This gap highlights the need
for replicating nuanced, human-like feeding strategies. This
gap in technology prompts the exploration of hierarchical
frameworks that break down intricate feeding actions into
simpler steps [7], [11]–[13], addressing the challenge of
complex food handling. Yet, deploying these frameworks
to manage the diverse and changeable nature of food in
real-world settings remains a formidable challenge. We aim
to leverage hierarchical planning, vision-based control, and
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Fig. 1: System setup for LAVA with an illustrative description
of the proposed framework with snapshots of task execution.

flexible adaptation to various food types, addressing the
limitations of current RAF approaches.

II. PROBLEM STATEMENT

This study tackles the challenge of sequential bite acqui-
sition to maximize the success rate and efficiency of long-
horizon food acquisition for efficient bowl clearance. The
focus is on a variety of food types, from granular items such
as cereals to semi-solid foods such as yogurt, and deformable
substances such as tofu, all within a static bowl and assumed
to be scoopable with a spoon. We assume access to bowl
image observations o ∈ R+

W×H×C = O of unknown bowl
states S. Here, W , H , and C denote the image dimensions.
The image is sourced from a camera attached to the wrist
of the robotic arm. We have access to expert demonstration
data for robot proprioceptive information (joint positions).
Our goal is to learn a policy π(ϕt|ot) that takes RGB images
as input (ot) and returns output as joint angles θt of the arm
for efficient long-horizon food acquisition.

III. PROPOSED APPROACH

We formalize the long-horizon food acquisition setting as
a hierarchical policy π. To do so we decouple π into separate
high, mid, and low-level sub-policies. We assume access to
K discrete manipulation primitives P k

H , k ∈ 1, ...,K, and
learn a high-level policy πH which selects amongst these
primitives based on visual input ot. The mid-level policy
πM further refines this selection, parameterizing the low-
level policy πL based on both the chosen primitive and
additional visual inputs. This low-level policy then executes
a sequence of actions θkt , aimed at achieving precise food
acquisition. The formulation of this hierarchical arrangement
is as follows:

https://raaslab.org/projects/RoboSpoon/
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Fig. 2: System Architecture of LAVA, employs a high level policy(blue) πH to select amongst discrete high level primitives
P k
H , which further gets refined by mid-level policy (green) πM to select amongst mid-level primitivesP k

M , low-level vision
parametrized policy πL (brown) executes trajectory learned from Behavioral cloning for long-horizon food acquisition.

• High-level policy: πH(P k
H |ot) focuses on selecting the

manipulation primitive for the current observation.
• Mid-level policy: πM (P k

M , ψ
k
M |ot, P k

H) refines this
choice by parameterizing actions to the specific food
item’s characteristics.

• Low-level policy: πL(θkt |P k
M , ψ

K
M ) executes the action

sequence, using parameters from the mid-level policy.
We consider low-level actions θt, parameterized by the

position of the tip of a spoon (x, y) and spoon roll and pitch
(γ, β) in the wrist frame of reference. As shown in Figure
2 detailing the LAVA setup, for more detailed description of
each module, refer to our paper [14].

A. High-level Policy

At the highest level of our hierarchical model, the high-
level policy πH(P k

H |ot) uses visual cues to select the most
suitable scooping primitive—Wide Primitive (PW

H ) for non-
cohesive, deformable foods such as tofu, and Deep Primitive
(PD

H ) for cohesive foods such as cereals. The Wide Primitive
leverages the bowl’s wall for support, creating a mass easy
to scoop without causing food breakage, while the Deep
Primitive enables direct scooping with precise control over
spoon trajectory for minimal disturbance.
ScoopNet (πH ): ScoopNet, built on the MobileNetV2 ar-
chitecture [15] as the base, distinguishes between these
primitives. Trained on a dataset of 5316 images for accurate
primitive selection, employing a Global Average Pooling
layer and dense layers for refined classification. We use
Adam optimizer and binary cross-entropy loss for the Op-
timizations, producing softmax probabilities for selecting

scooping strategies for specific task adaptation.

B. Mid-level Policy

The Mid-level Policy πM (P k
M , ψ

K
M |ot, P k

H) refines and
parameterizes the chosen primitive, crucial for translating
high-level strategy decisions into low-level action execution.

1) TargetNet (πM1) for Wide Primitive: TargetNet em-
ploys Mask R-CNN to identify and segment target items
such as tofu for scooping. This model segments food items,
enabling the selection of appropriate mid-level primitives:
wall-guided scooping and center align using annotations
for precise segmentation and transfer learning for accuracy.
TargetNet divides the bowl into sub-regions (R1 for rightmost
and closest to the wall, R2 for center and R3 otherwise) to
guide scooping decisions, whether leveraging wall support
or aligning for easier access.

Wall-guided Scooping and Align: This method varies
scooping based on food’s position—Wall-guided Scooping
for foods in subregions R1 and R2 and Align for food
positioned in R3 subregion. The alignment step calculates the
spoon’s orientation and the distance to move food towards
the bowl’s center, optimizing scooping paths.

2) DepthNet (πM2) for Deep Primitive: DepthNet, with
its Sequential model, determines food depth in the bowl,
aiding in selecting the depth for deep scooping of cohesive
foods. It’s trained on diverse cereal images to precisely esti-
mate food volume, adjusting the scooping depth accordingly
for effective clearance.

Direct scooping (P 1
M2, ψ

1
M2) Incorporates real-time feed-

back to adjust scooping strategies based on DepthNet’s depth



information, using behavior cloning to refine the spoon’s
path, ensuring efficient scooping across different food depths.

C. Low-level policy

At the foundation of our model, we use behavioral cloning
(πL), coupled with kinesthetic teaching [16], to fine-tune the
robot’s scooping actions across varied food textures, directly
informed by expert demonstrations. This method involves
learning distinct scooping trajectories for different foods. The
goal is to minimize deviations from these optimal paths using
a cost function J(τ), with the Weiszfeld algorithm [17], [18]
applied for optimization. This algorithm iteratively adjusts
the estimated trajectory x̂, improving scooping precision by
reducing the sum of distances from demonstrated trajectories
until minimal changes are achieved. For a deeper dive into
the specifics of our behavioral cloning approach and its
application within LAVA, refer to our discussion in paper.

IV. QUANTITATIVE RESULTS

Our experiments detailed in [14] involve a comprehensive
setup (see Figure 1) including a UR5e robot arm with
custom spoon attachment, and a RealSense camera, testing
on a variety of food types from cereals to tofu in soup.
Utilizing two baselines, LAVA-low and Fixed Trajectory
Scooping, for comparative analysis, we explore a range of
food configurations to assess our hierarchical framework’s
effectiveness in adaptive food acquisition. Our key findings:

1) Network Performance: ScoopNet achieved 100% ac-
curacy in choosing correct high-level primitives, TargetNet
accurately predicted bite targets at 87.9% , and DepthNet
successfully determined correct spoon depths for bite sizes
at 85.7%, demonstrating the LAVA networks’ effectiveness
in robotic-assisted feeding.

2) Baselines Comparison: LAVA outperformed both
baseline models, LAVA-low and FTS, in efficiency, scoop
size, and minimizing spillage and breakage as visible in
Figure 4 and Figure 3.It adeptly managed liquids, signif-
icantly minimized breakage with deformable foods such as
tofu through strategic scooping, and ensured minimal spillage
with solid foods using align-then-scoop strategy.

3) Zero-shot Generalization: LAVA effectively handled
diverse foods, including soup with tofu and apple chunks,
showcasing adaptability in Figures 3 and 5. Its ability to ad-
just in real-time for both solid and liquid scooping underlines
LAVA’s robustness across food types. Refer to our paper for
a comprehensive overview of LAVA’s methodologies.

V. CONCLUSION, LIMITATION AND FUTURE WORK

In this study, we introduced a hierarchical policy frame-
work, LAVA, that improves robotic food acquisition from
liquids to deformable solids. Utilizing LAVA’s networks,
it addresses the variability in food types, achieving higher
efficiency and accuracy with less spillage and breakage than
baselines. Despite its success, challenges remain with thin
or irregularly shaped foods. Future work aims to expand
the action space and explore new data acquisition methods,
potentially using online videos for complex food interactions.
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Fig. 3: Breakdown of experimental performance comparison
between LAVA, LAVA-low, and Fixed Trajectory Scoop-
ing(FTS). ∗ represents zero-shot experiments.
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Fig. 4: Individual trials comparison between LAVA and
baselines: (a) different tofu configurations, (b) cereals

Failure

Success

Fig. 5: Zero-shot acquisition with tofu in soup: Top images
depict spoon alignment of tofu to the bowl’s center, which
drifts due to soup’s fluidity. Bottom images show realignment
and successful scooping.
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