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Fig. 1: Motivation. Objects made from different materials can exhibit distinct behaviors under interaction. Even within the same object
category, varying physical parameters like stiffness can lead to different behaviors. Examples shown here include handling cotton rope and
cable, as well as arranging granular piles such as coffee beans and toy blocks. Although the initial configuration and action are the same,
different physical parameters result in distinct final states, necessitating the need for online adaptation for effective manipulation. To this end,
we introduce AdaptiGraph, a unified graph-based neural dynamics framework for real-time modeling and control of various materials with
unknown physical properties. AdaptiGraph integrates a physical property-conditioned dynamics model with online physical property
estimation. Our framework enables robots to adaptively manipulate diverse objects with varying physical properties and dynamics.

Abstract—This paper introduces AdaptiGraph, a learning-based
dynamics modeling approach that enables robots to predict, adapt
to, and control a wide array of challenging deformable materials
with unknown physical properties. AdaptiGraph leverages the
highly flexible graph-based neural dynamics (GBND) framework,
which represents material bits as particles and employs a
graph neural network (GNN) to predict particle motion. Its
key innovation is a unified physical property-conditioned GBND
model capable of predicting the motions of diverse materials with
varying physical properties without retraining. Upon encountering
new materials during online deployment, AdaptiGraph utilizes a
physical property optimization process for a few-shot adaptation
of the model, enhancing its fit to the observed interaction data.
The adapted models can precisely simulate the dynamics and
predict the motion of various deformable materials, such as
ropes, granular media, rigid boxes, and cloth, while adapting to
different physical properties, including stiffness, granular size,
and center of pressure. On prediction and manipulation tasks
involving a diverse set of real-world deformable objects, our
method exhibits superior prediction accuracy and task proficiency
over non-material-conditioned and non-adaptive models.

*Denotes equal contribution.

I. INTRODUCTION

Learning predictive models, also known as system identifi-
cation, is a crucial component of many robotic tasks. Whereas
classical methods rely on the explicit parameterization of
the system state and struggle with systems that have high
degrees of freedom, a significant body of work over the
last decade has attempted to learn models directly from
visual observations. Prior approaches have learned predictive
models based on pixels [, 4] or latent representations of
images [2, 3]. However, such representations often overlook
the structure of the environment and do not generalize well
across different camera poses, object poses, robots, object sizes,
and object shapes. Recently, a series of studies have employed
Graph Neural Networks (GNN) to model environments as
3D particles and their pairwise interactions [5—8]. A graph
representation has proven effective in capturing relational bias
and predicting complex motions of deformable objects, but
prior works typically only focus on a single material and
would require extensive training to model an object of new
material or with unknown physical properties. Hence, it is
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Fig. 2: Overview of proposed framework: AdaptiGraph. (a) Our graph-based dynamics model f is conditioned on the discrete material
type and continuous physical parameters ¢. ¢ is encoded as the node features, which will be propagated and updated in the model training
process. Our model can accurately predict the future state 21 for a variety of objects with different physical properties. (b) Our framework
performs physical property estimation for few-shot adaptation. This is achieved through an inverse optimization process to estimate the
optimal physical parameters as predicted by the learned dynamics model f. The optimal physical parameter ¢* is identified by minimizing
the cost function, which is defined as the Chamfer Distance between the predicted graph state and the actual future graph state.

an important challenge to provide such graph-based models
to adapt to objects and tasks involving diverse materials and
varying physical properties, such as manipulating ropes with
different stiffness and granular media with different granularity.

In this work, we present a unified framework for modeling
the dynamics of objects with different materials and physical
properties. In addition to classifying objects into discrete
material types such as rigid objects, ropes, etc., we further
consider a range of intra-class physical property variations in
each material type. We propose to encode this variation using
a continuous variable which we call the physical property
variable, and integrate the variable into a Graph-Based Neural
Dynamics (GBND) framework (Fig. 1). The physical property
variable indicates the important intrinsic properties of each
material category, including stiffness for deformable objects
and the center of pressure position for rigid objects. By
encoding the material type and physical property variables
into particles in the graph, the model learns material-specific

dynamic functions that predict different physical behaviors
for objects with different physical properties. We then employ
a test-time adaptation method to reason about the physical
properties of novel objects. Specifically, the robot actively
interacts with the novel object, observes its response, and
estimates its physical properties to optimize the model’s fit
to the observed reactions. The estimation is performed in a
few-shot manner and can be directly applied to planning and
trajectory optimization for downstream manipulation tasks.

II. METHODS

A. Problem Formulation

Our aim is to learn a dynamics model, f, that is conditioned
on the material type M and continuous physical property
variable ¢, and develop a test-time few-shot adaptation scheme
to infer the physical property variable for unseen objects.
Specifically, the dynamics model predicts how the environment
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Fig. 3: Qualitative results on dynamics prediction: We conduct
qualitative comparisons to assess the performance of our method
against the baseline of a GNN without adaptation. The results,
delineated by red dashed boxes, demonstrate that our approach
surpasses the baseline in accurately capturing the variations in
dynamics that arise due to physical properties.

will change if the robot applies a given action:

Zep1 = [z, ue; 0, M), (D
where M indicates the material type (e.g., rigid, granular, rope,
cloth), ¢ indicates material-specific physical property variables,
and wuy, z¢, 2441 are the robot action, current environment state
at time ¢, and the next state at time ¢ + 1, respectively. In
our approach, we train the dynamics model to minimize the
accumulated future prediction loss.

By conditioning on M and ¢, the model learns to predict
material-dependent physical behaviors, based on which we can
perform physical property estimation through the following
optimization problem:

T

oF = arg m(gn Z cost(Zi41, 2t41),
t=1

2

where T is the iteration number indicating the number of
interactions with the unseen object, and cost(-,-) is the cost
function measuring the discrepancy between the predicted
future state 2,41 and the observed state z;yi.

Figure 2 shows the overall framework of AdaptiGraph.
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Fig. 4: Qualitative results on closed-loop feedback planning: We
present a qualitative comparison of MPC performance by contrasting
our method with the baseline method. Visualizations shown here
demonstrate that our method effectively achieves the target configura-
tion within limited steps.

III. EXPERIMENTAL RESULTS
A. Forward Dynamics Prediction

Fig. 3 shows the qualitative comparisons between our
material-conditioned GBND model and the baseline method
Ours w/o Adaptation, which is an ablated version of our
material-adaptive model by using only the mean physical
property variable ¢ as input in deployment. The comparisons
reveal that, with estimated physical property, the model’s
prediction matches the interaction outcome more accurately. For
instance, in the rope scenario, the baseline model’s prediction
fails to capture both the below-average stiffness of the yarn
object and the above-average stiffness of a polymer rope. In
contrast, our method successfully accounts for variations in
their motions, exhibiting more precise forecasts of unusual
behaviors. Likewise, our model surpasses the baseline in
scenarios involving materials with extreme physical properties,
such as rigid boxes that differ in center of pressure, granular
materials of various sizes, and clothes of differing stiffness.

B. Model-Based Planning

We further show that integrating our material-conditioned
GBND model and physical property adaptation into an MPC
framework facilitates a series of robotic manipulation tasks.
As illustrated in Figure 4, our approach enables more effective
and efficient planning compared to the baseline method.



[1]

[6]

REFERENCES

Chelsea Finn and Sergey Levine. Deep visual foresight
for planning robot motion. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages
2786-2793. IEEE, 2017. 1

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Moham-
mad Norouzi. Dream to control: Learning behaviors by
latent imagination. arXiv preprint arXiv:1912.01603, 2019.
1

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi,
and Jimmy Ba. Mastering atari with discrete world models.
arXiv preprint arXiv:2010.02193, 2020. 1

Ryan Hoque, Daniel Seita, Ashwin Balakrishna, Aditya
Ganapathi, Ajay Kumar Tanwani, Nawid Jamali, Katsu
Yamane, Soshi Iba, and Ken Goldberg. Visuospatial
foresight for multi-step, multi-task fabric manipulation.
arXiv preprint arXiv:2003.09044, 2020. 1

Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B Tenenbaum,
Antonio Torralba, and Russ Tedrake. Propagation networks
for model-based control under partial observation. In ICRA,
2019. 1

Haochen Shi, Huazhe Xu, Zhiao Huang, Yunzhu Li, and
Jiajun Wu. Robocraft: Learning to see, simulate, and shape
elasto-plastic objects with graph networks. arXiv preprint
arXiv:2205.02909, 2022.

Haochen Shi, Huazhe Xu, Samuel Clarke, Yunzhu Li,
and Jiajun Wu. Robocook: Long-horizon elasto-plastic
object manipulation with diverse tools. arXiv preprint
arXiv:2306.14447, 2023.

Yixuan Wang, Yunzhu Li, Katherine Driggs-Campbell,
Li Fei-Fei, and Jiajun Wu. Dynamic-Resolution Model
Learning for Object Pile Manipulation. In Proceedings of
Robotics: Science and Systems, Daegu, Republic of Korea,
July 2023. doi: 10.15607/RSS.2023.XIX.047. 1



	Introduction
	Methods
	Problem Formulation

	Experimental Results
	Forward Dynamics Prediction
	Model-Based Planning


