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Abstract—Manipulating garments and fabrics has long been a
critical endeavor in the advancement of home-assistant robots,
serving as a focal point for researchers in the fields of vision
and robotics. However, due to complex dynamics and topological
structures, garment manipulations pose significant challenges.
Recent successes in reinforcement learning or vision-based meth-
ods offer promising avenues for learning garment manipulation.
Nevertheless, these approaches are severely constrained by cur-
rent benchmarks, which exhibit unrealistic simulation behavior
and offer only a limited number of tasks. So we present UniGar-
ment, a benchmark designed for deformable object and garment
manipulation within realistic 3D indoor scenes. Our benchmark
encompasses a diverse range of garment types, robotic systems
and manipulators including dexterous hands. The multitude of
tasks included in the benchmark enables further exploration
of the interactions between garments, deformable objects, rigid
bodies, fluids, and avatars. Furthermore, by incorporating mul-
tiple simulation methods, including FEM and PBD, along with
our proposed sim-to-real techniques, we aim to significantly
narrow the sim-to-real gap. We evaluate state-of-the-art vision
methods, reinforcement learning (RL), and imitation learning
(IL) techniques on these tasks, highlighting the challenges faced
by current algorithms, notably their limited generalization capa-
bilities. Our comprehensive analysis and provision of open-source
environments lay the foundation for future research in garment
manipulation, unlocking the full potential of these methodologies.

Index Terms—Garment Manipulation, Simulation, Benchmark

I. INTRODUCTION

The next-generation indoor assistant robots should possess
not only the abilities to directly manipulate a wide variety of
objects, including rigid, articulated [1], and deformable objects
[2], but also the capability to leverage interactions among
those physical media, including flow and fluids, in order to
assist humans [3]. For instance, washing clothes entails the
interaction between garments and fluids, while dressing up
requires collaboration between robots and humans. Among all
the tasks proposed in previous work [1], [4], [5], garment
manipulation stands out as one of the most challenging yet
crucial and extensively discussed tasks in the robotics and
computer vision community due to its scientific and practical
significance.

Garment Manipulation task presents three following chal-
lenges. First, each individual garment, characterized by its
unique topological structure and inherent flexibility, possesses
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Fig. 1. UniGarment Overview We propose 20 novel tasks in UniGarment
Benchmarks to make further exploration in physical interaction between
objects and evaluate state-of-the-art deformable and garment manipulation
algorithms.

an extensive range of self-deformation states and exhibits com-
plex kinematic and dynamic properties. Therefore, it is crucial
for models to comprehend the various forms of garments.(C1).
Secondly, apart from different garments necessitating diverse
simulation techniques, they also interact with various types of
objects, ranging from rigid (e.g., clothes hanger) to articulated
(e.g., wardrobe), as well as fluids and people. Consequently,
enabling models to understand these physical properties and
interactions presents significant challenges.(C2) Finally, con-
sidering that strategies for manipulating garments are often
highly complex, and visual input of garments is more challeng-
ing due to their diverse patterns and materials, manipulating
garments faces a greater sim2real gap.(C3) [6], [7].

Training such a powerful agent requires a vast amount of
data encompassing interactions between robots and objects,
making it impractical to directly collect data from the real
world. Researchers therefore, have long been pursuing bench-
marks for garment manipulation tasks [8]–[11]. However,
current deformable simulations suffer from various drawbacks,
such as missing garment meshes [8] or lacking support for
physics engines [11]. Additionally, they offer a very limited
range of tasks, which discourages further research endeavors.

Therefore, we present UniGarment (Fig:1) , a unified simu-
lation and benchmark for garment manipulation. UniGarment
have three novel components to address the demands for
diversity and realism: The powerful UniGarment Engine,
which built on the top of Omniverse Isaac Sim [12], sup-



ports variety of physical simulation method. The simulator
not only supports Particle-Base-Dynamic(PBD) [13], Finite-
Element-Method(FEM) [14], to simulate garments, fluid and
deformable objects but also makes integration with ROS
[15] to provide an efficient teleoperation pipeline for data
collection. UniGarment Assets is a large-scale indoor dataset
comprising 1) garments models covering 11 categories of daily
garments from ClothesNet [16] 2) various kinds of robot end-
effector including gripper, suction and dexterous hands. 3)
high-quality 3D assets including 20 scenes and 9000+ object
models from ShapeNet [17].With all these realistic simulation
features and rich assets, we propose UniGarment Task con-
taining 20 tasks divided into 5 groups to evaluate state-of-art
vision-based and reinforcement learning base algorithm.

As a platform designed to address the above challenges for
researchers, our simulator has four following characteristics:
1) Rich. The richness of our simulator can be categorized
into two aspects: the diversity of simulation content offered
by UniGarment Assets and the depth of physical interaction
facilitated by UniGarment Engine. It is noteworthy that we
specifically emphasize exploration in multi-physics simulation,
encompassing rigid-articulated, deformable-garment, fluid dy-
namics, and flow, along with their interactions. This focus
is vital for training agents capable of comprehending real-
world physical properties. [18](addressing C2) 2) Real As the
sim-to-real gap emerges as the main obstacle in developing
embodied agents, UniGarment Engine surpasses Omniverse
capabilities by providing mature sim-to-real algorithms, such
as ADR [19], predominantly utilized in the RL field, and the
Visual Sim-Real Alignment Algorithm, primarily employed in
perception algorithms.(addressing C3) 3) Efficient Given the
highly large and nearly infinite state and action spaces for
garment manipulation, a substantial volume of data forms the
foundation for models to understand the structure and defor-
mation of garments. As the result, our GPU-based simulator
is highly parallelized, which show particularly advantageous
during the training process. Larger batch sizes can significantly
enhance RL-based algorithms [20], while high data collection
speeds can reduce the training time of perception-based al-
gorithms.(addressing C1) 4) Multifunctional With the rise
of algorithms such as imitation learning, the field demands
increasing diversity in simulator functionality. Our simulator
support ROS [15] for teleoperation and MoveIt for motion
planning.This can also narrow the sim2real gap [6](addressing
C3)

Our benchmark experiments indicate that even a seemingly
simple task, such as unfolding in the UniGarment Task,
poses significant challenges for current algorithms. Specifi-
cally, these difficulties stem from a lack of comprehension of
physical interactions and high-dimensional states, particularly
evident in complex deformable manipulation scenarios. Addi-
tionally, we highlight that current vision-based algorithms ex-
hibit limited generalization capabilities, with their performance
significantly impacted by the initial state of objects. Moreover,
RL-based algorithms demonstrate poor performance on tasks
requiring long-horizon planning. These analyses have the
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Fig. 2. UniGarment Tasks Sequence The picture provides 4 demo of our
tasks. Our task types are very diverse, ranging from mobile tasks, dexterous
tasks to tasks that require manipulating multiple physical mediums.

potential to guide the development of improved methods for
garment and deformable object manipulation.

In summary, UniGarment makes the following contribu-
tions:

• A realistic indoor interactive environment for garment
manipulation featuring diverse scenes, a plethora of
objects, garments, and avatars, combined with mature
Sim2Real Algorithms, facilitating the learning and eval-
uation of garment and deformable manipulation.

• The first benchmark concentrates on the physical mate-
rials and interactions of garments, deformable objects,
fluids, flows, and rigid objects, laying the groundwork for
training an agent capable of comprehending real-world
physical object behaviors.

• Extensive experiments and detailed analyses of state-
of-the-art deformable and manipulation algorithms, re-
vealing their strengths and weaknesses in promoting
future research on multi-material and multi-physics ma-
nipulation task.

II. UNIGARMENT BENCHMARK

UniGarment aims to integrate state-of-the-art physical sim-
ulation methods, high-quality and diverse simulation assets
and novel-proposed, rich-interaction tasks into a unified frame-
work. As shown in Fig:3, we will introduce the three main
components in detail: UniGarment Engine, UniGarment Assets
and UniGarment Tasks.

A. UniGarment Engine

The UniGarment Engine supports simulation for various
objects, including flow and fluid dynamics. It also offers user-
friendly sim2real methods and ROS integration, ideal for end-
to-end robotic research like teleoperation and motion planning.

To ensure physically realistic simulation, we employ various
methods tailored to different objects. Firstly, Particle-Based
Dynamics (PBD) [13] is utilized for simulating large pieces
of garments (such as tops, dresses, trousers, and skirts), as
well as fluid dynamics. Secondly, for smaller elastic garments



UniGarment Task

Garment-Garment

UniGarment Engine

Particle Base Dynamics

UniGarment Asset

ROS Interface

Teleoperation Motion Planning

Render

Sensor Material

 Sim2Real

Alignment ADR

RealWorld 

Real Object Real Scene

Finite Element Method

Articulation and Rigid

Robot Controller

Ph
ys

x S
im

ul
at

or
Franka

Mobile Franka Dexterous hands 

Dress 

Hat 

Mask 

Fluid

Articulated 

Flow 

Rigid

Garment-Fluid

Garment-Deform

Garment-Rigid

Garment-Avatar

Fold

ClothesPiles

Wash

Clean

Fling

Dress Up

Hang

Place

Glove 

Trousers One-piece

Socks

Tie

Avatar

Suction 

Skirts
UnderPants

Scarf

Robot
UR

Tops
Garment

Interactor

Fig. 3. The Architecture of UniGarment (Left) Based on PhysX5, our simulation supports a variety of physical materials. (Middle) Our simulator can
deliver physically realistic simulations of robots, garments, and interactions between fluids, flows, and avatars. (Right) Subsequently, we can utilize these
assets to construct tasks across various categories. Bottom The diagram illustrates our sim-to-real deployment pipeline. By leveraging ROS, we can efficiently
collect data from the real world. Then, using photo-realistic rendering techniques along with our proposed sim-to-real algorithm, we can dramatically reduce
the sim-to-real gap.

like gloves and socks, as well as common daily life objects
such as toys or sponges, the Finite Element Method (FEM)
[14] is applied. Thirdly, Human simulation involves articulated
skeletons with bones connected via rotational joints, coupled
with a surface skin mesh for high-fidelity rendering. Robot
simulation employs the PhysX articulation system, specifically
designed for robot simulation, supporting precise force control,
P-D control, and inverse dynamics. It is noteworthy that
different physical material parameters are assigned to
objects for simulation, including but not limited to surface
tension and cohesion for fluids, stiffness and particle
contact for garments, and modulus for deformable objects.

B. UniGarment Assets

The UniGarment Asset comprises simulation content con-
sisting of meshes or URDF files compatible with various
simulation methods. Below are the main components of the
UniGarment Asset.

• Garment and Cloth We select garments from ClothesNet
[16], a large-scale dataset of 3D clothes objects with
information-rich annotations. Our selection encompasses
11 categories, such as hats, ties, masks, gloves, and socks.

• Robot We incorporate a diverse range of robots into
our system, including a Franka, a UR5 with suction
capabilities, a RidgebackFranka featuring wheels on its
base, and a UR10e with ShadowHands mounted on it.

• Interactor We also import avatars and articulated objects
to create long-horizon tasks for garment manipulation.

Since our primary focus lies in interactions with various
physical media, we also introduce fluid dynamics and
flow simulations into the simulator.

C. UniGarment Task

To fully exploit the model’s capability in understanding
physical interactions and conduct comprehensive evaluations
of current algorithms, we categorize 20 tasks into 5 groups.
Examples of task sequences are provided in Fig. 2.

• Garment-Garment This category focuses on fundamen-
tal garment manipulation, including tasks like folding and
unfolding single garments, as well as interactions between
multiple garments such as retrieving items from clothes
piles.

• Garment-Fluid Tasks in this group concentrate on the
interaction between garments and fluids, where trajectory
dynamics play a crucial role.

• Garment-Deform Exploration of tasks involving de-
formable interactions, such as using a sponge to clean dirt
off clothes or packing hats and tops together, is ongoing.

• Garment-Rigid Common interactions between clothing
and rigid bodies, such as hanging clothes or putting
them into a washing machine, require precise grasp point
selection and trajectory planning.

• Garment-Avatar Dressing tasks pose the greatest chal-
lenge, as they require understanding human intention and
safe collaboration with humans.
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