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Fig. 1: AdaFold successfully adapts the folding trajectories of the two cloths with different physical properties, achieving a better folding
than a predefined triangular trajectory.

Abstract— We present AdaFold, a model-based feedback-
loop framework for optimizing folding trajectories. AdaFold
extracts a particle-based representation of cloth from RGB-D
images and feeds back the representation to a model predictive
control to re-plan the folding trajectory at every time-step. A
key component is the use of semantic descriptors extracted
from visual-language models to distinguish between ambiguous
point clouds of differently folded cloths. Our experiments
demonstrate AdaFold’s ability to adapt folding trajectories to
cloths with varying physical properties and generalize from
simulated training to real-world execution.

I. INTRODUCTION AND RELATED WORK

Generalizing robotic manipulation skills requires adapt-

ing to object variations such as pose, shape, and physical

properties [1]. Feedback-loop manipulation represents a class

of methods to adapt to these variations [2]. Yet, within the

realm of deformable objects such as cloth, feedback-loop

manipulation remains under-explored as its effectiveness is

heavily contingent upon the robot’s ability to perceive and

track the state of the object accurately.

Recent advances in model-based manipulation have shown

promise in planning pick-and-place interactions for folding

and flattening by learning cloth dynamics [3], [4]. Despite

progress, these methods often rely on open-loop planning and

predefined manipulation trajectories, limited by the practical

challenges of estimating and tracking cloth states during

manipulation. A promising approach to overcome these chal-

lenges involves integrating semantic knowledge in the state

representation of the cloth, extracted from pre-trained visual-

language models (VLMs) [5]. However, the effectiveness

of VLMs in accurately interpreting a wide range of cloth

configurations is yet to be fully explored.
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This study introduces AdaFold, a model-based framework

for feedback-loop manipulation of cloth to optimize fold-

ing trajectories. Utilizing a particle-based state representa-

tion and a learned cloth model, AdaFold employs model-

predictive control to adapt to cloth variations by re-planning

folding trajectories after every timestep. We integrate se-

mantic descriptors of the cloth’s upper and bottom layers

from RGB images using pre-trained VLMs to address the

challenges of tracking the cloth state.

AdaFold’s effectiveness is demonstrated through extensive

evaluation in simulation and real-world environments using

a single-arm manipulator for the half-folding task [6]. Our

results confirm AdaFold’s ability to optimize folding trajecto-

ries (Fig.1), successfully accounting for variations in physical

properties.

II. ADAFOLD

The problem we address is feedback-loop manipulation

of cloth, focusing on optimizing the manipulation trajectory

within a set of pick-and-place positions xpick, xplace ∈ R
3.

These positions can be provided by a dedicated planner [7],

[8], [9]. We consider the half-folding task proposed in [6]

as a representative evaluation task, with the goal of folding

a rectangular cloth in half. The task is performed with

the assumption of quasi-static manipulation, which implies

that the forces and torques acting on the cloth are in static

equilibrium at each time-step. Under these conditions, we

decouple the problem of feedback-loop manipulation into

cloth perception and trajectory optimization and propose a

framework to tackle it, denoted as AdaFold. An overview

of AdaFold can be seen in Fig.2.

Cloth Perception: The state of the cloth at time t

is described as a 3D point cloud Pt representing the

observable points of the cloth. The subscript t is omitted

when the specific time-step of the state is not necessary. To

disambiguate different cloth configurations, we introduce

semantic information in the point cloud, allowing us to



Fig. 2: Overview of AdaFold for feedback-loop manipulation of cloths. Given a set of pick-and-place positions (xpick, xplace), AdaFold
optimizes the best folding action a∗

t at each time-step t. RGB-D observations from different calibrated cameras are used to extract point
cloud representations with semantic descriptors. The semantic descriptors Upper and Bottom are provided by VLMs. The optimal folding
action a∗

t is obtained with MPC, which uses the forward and adaptation modules fθ and gψ to evaluate the candidate trajectories an (light
blue) and update the optimal control sequence a∗ (dark blue).

cluster the points into two sets: PU and PB , where PU

corresponds to the Upper layer points of the cloth, PB

to the Bottom layer, and P = PU ∪ PB . Specifically,

the point cloud P is obtained from RGB-D observations

using the camera’s intrinsic matrix. We then find the

segmentation masks full, upper and bottom from the

RGB observation using Grounding-DINO [5] and Segment

Anything (SAM) [10] and text prompts. To overcome the

challenges encountered in robustly segmenting the upper

and bottom layers of cloth from one specific prompt, we

adopted an ensemble of prompts followed by a heuristic to

perform the mask selection. This heuristic aggregates masks

generated from diverse prompts through logical operations

and color thresholding, acting as a soft voting mechanism.

Trajectory Optimization: We model the discrete-time

dynamics of the observable points of a cloth similarly

to [11], [12], where they jointly learn from synthetic data:

1) an adaptation module gψ to encode a recent history

of observations into a latent representation zt of the

physical properties and adapt to different objects, 2) an

approximate model fθ of the cloth dynamics conditioned

on the latent representation. Thus, P̂t+1 = fθ(Pt, xt, at, zt),
where P̂t = PUt ∪ PBt , xt is the 3D position of the robot

end-effector (EE), at is the robot action corresponding to

a 3-DoF EE displacement. We use PointNet++ [13] as the

backbone and a mean squared error loss for training. The

folding trajectory from time t = 0 to t = T is defined

as τ0:T = [P0, P1, . . . , PT ;x0, x1, . . . , xT ; a0, a1, . . . , aT ]
where T is the control horizon. The trajectory is optimized

using MPC with reciding horizon H to find a sequence

of actions a∗
0:T = argmin

a0:T

J (τ0:T ) minimizing a cost

function J . The complete optimization process is detailed

in Algorithm 1, which outlines how N candidate open-

loop control sequences at:t+H are first sampled from a

multivariate Gaussian distribution. The process then employs

the MPPI algorithm to refine and update the optimal control

input [14]:

a∗h =
1

∑N

n=1
exp

(

− 1

λ
J n

)

N
∑

n=1

exp
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λ
J n

)
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Algorithm 1: AdaFold

Result: Optimized folding actions a∗
0:T .

Input: Pick and place positions {xpick, xplace},
Learned models fθ and gψ , Horizon H ,

Number of action candidates N , Control

hyper-parameters λ,w1, w2, Initial control

sequence a0:H , Control variance: Σ
1 for t← 0 to T do

2 Pt = PUt ∪ PBt ← Cloth Perception({I1t , I
2
t })

3 for n← 1 to N do

4 ant:t+H ← N (at:t+H ,Σ)
5 zt ← gψ(τt−K:t−1)
6 for h← t to t+H do

7 Compute τh:h+1 unrolling fθ
8 J n(τh:h+1)← w1c1 + w2c2
9 end

10 J n(τt:t+H)←
∑t+H

h=t J
n(τh:h+1)

11 end

12 a∗t:t+H ← MPPI({J n(τt:t+H)}Nn=1, λ) ▷ Eq. ( 1)

13 Execute a∗t
14 Warm-start control sequence a with a∗

15 end

for h = t, .., t+H where J n is the cost of the n-th trajectory,

λ is a temperature parameter that controls exploration, and

ant is the control input of the n-th trajectory at time step t.

Cost function: The cost function is designed to maximize

the alignment of the cloth’s halves, using Intersection over

Union (IoU) to assess the alignment. We further include a

term penalizing large cloth displacements. Specifically, the

cost is defined as a weighted sum of two terms:

J (τt:t+H) = w1c1(τt:t+H) + w2c2(τt:t+H), (2)

with weight w1, w2. The term c1 evaluates the progress

towards the alignment of the two halves as:

c1(τt:t+H) =

H
∑

j=1

βH−jIoU(P̂Ut+j , P
B
t+j), (3)



TABLE I: Final IoU obtained folding the cloths with different
methods. The folding is executed 20 times for each cloth and
method.

Method ↑ 10 Cloths ↑

Random 0.40± 0.17

Triangular 0.41± 0.02

DDPG-Critic 0.48± 0.09

Adafold-OL 0.48± 0.16

AdaFold 0.78± 0.11

where βH−j progressively increases the importance of fu-

ture cloth alignments, preventing the robot from greedily

selecting actions that lead to aligning the halves as fast as

possible. The second term c2, instead, acts as a binary flag

that penalizes actions moving the gripper outside the cloth’s

initial convex hull, thus leading to a larger movement of the

entire cloth.

III. EXPERIMENTAL RESULTS

Our experiments evaluate AdaFold’s ability to optimize

folding trajectories through feedback-loop manipulation,

specifically assessing its improvement in folding outcomes

and adaptability to varying cloth physical properties.

Half Folding Task: We consider the half-folding task pro-

posed in [6], where the objective is to fold the cloth in half

by aligning the corners. We evaluate the success of the fold-

ing execution by computing the 2D intersection over union

(IoU) between the two halves of the cloth. We implemented

the task in PyBullet [15] using a square cloth with elastic

and stiffness parameters of 40 and 60. We replicated the

task in the real world using two Realsense D435 cameras

capturing different views of the scene and a Franka-Emika-

Panda robot. The real-world cloth dataset consists of six

rectangular cloths, each varying in physical properties and

dimensions. The cloths 1 through 5 are arranged to reflect

an increasing stiffness, measured accordingly to [16]. The

sixth cloth is distinguished by its larger size.

Baselines: We compared AdaFold against four baselines:

a fixed triangular trajectory (Triangular), a random action

selection (Random), an open-loop AdaFold (AdaFold-OL),

and a model-free learning method DDPG, trained offline on

the same dataset as AdaFold. DDPG utilized its critic to

select from the action candidates (DDPG-Critic), with the

architecture and hyperparameters aligned with AdaFold.

Simulation Results: To assess the relevance of optimiz-

ing the folding trajectory and showcasing the benefits of

feedback-loop optimization, we compared our method in

simulation against the four baselines. We randomly selected

10 elastic and stiffness parameters to introduce variations not

observed during training. Table I shows the folding results.

It can be observed that methods that do not optimize the

folding trajectory (Random and Fixed) yielded the lowest

performance, thereby underscoring the advantage of trajec-

tory optimization. While the model-free baseline (DDPG-

Critic) and the open-loop approach (AdaFold-OL) improved

the folding outcome, AdaFold outperformed all the baselines

and achieved the best folds, showcasing the benefits of

feedback-loop optimization.

TABLE II: Final IoU evaluated on real-world cloths 1 − 5. The
folding is repeated 5 times for each combination of cloth and
method.

Cloth Triangular ↑ AdaFold ↑

1 0.57± 0.03 0.81± 0.06

2 0.55± 0.03 0.81± 0.06

3 0.61± 0.01 0.79± 0.04

4 0.60± 0.03 0.82± 0.05

5 0.75± 0.02 0.83± 0.04

All 0.62± 0.08 0.81± 0.05

TABLE III: Evaluation of AdaFold’s generalization to variations
of cloth initial positions and size. The evaluation metric is the IoU.
The folding is repeated 1 time for each random position and 5 times
for cloth 6 for both evaluated methods.

Method 10 Random Poses ↑ Cloth 6 ↑

Triangular 0.57± 0.03 0.55± 0.01

AdaFold 0.76± 0.09 0.71± 0.05

Real-World Results:We further assessed whether AdaFold

can improve the fold quality compared to the Triangular

trajectory for real-world cloths. We present the results in

Table II. The variance that the Triangular trajectory exhibits

highlights that identical folding trajectories can yield differ-

ent outcomes based on the cloth’s properties. Stiffer cloths

(e.g. 4−5) achieved on average, a better fold with respect to

less stiff cloths. Conversely, AdaFold consistently produced

satisfactory folds across different samples, improving the

fold for samples where the fixed trajectory fell short. Figure 1

provides a qualitative comparison of the fixed and optimized

trajectories for samples 1 and 4.

We extended this evaluation by testing AdaFold on varia-

tions in the initial positions and size of the cloth. We selected

cloth 2 for the variation in position and randomly rotated

its starting position on the table 10 times, with rotations

ranging between ±45◦ degrees. For the variation in size,

we selected cloth 6, which is larger than cloths 1 − 5.

We compared AdaFold against the Triangular baseline and

showed the results in Table III. While AdaFold outperformed

the Triangular trajectory in both scenarios, the improvement

was not as high as in the previous evaluation. We attribute

this to the higher misalignment between training and test

conditions.

The overall outcomes confirm the adaptability of our

method, underscoring the benefit of using particle-based

representations along feedback-loop manipulation to adapt

to different object variations.

IV. CONCLUSION AND FUTURE WORK

We introduced AdaFold, a novel framework that leverages

model-based feedback-loop manipulation to optimize cloth

folding trajectories. Our evaluations on the half-folding task

showcased the potential of coupling a robust perception

module with data-driven optimization strategies to perform

feedback-loop manipulation. We plan to extend these results

to different goal and reward configurations, a broader spec-

trum of clothing items and tasks beyond folding.
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