
GmClass: Granular Material Classification through Force Feedback of
Robotic Manipulation

Zeqing Zhang1,2, Guanqi Chen1, Wentao Chen1, Ruixing Jia1, Liangjun Zhang3 and Jia Pan1,2

Abstract— We propose GmClass, a force-based classifier for
amorphous granular materials (GMs). Inspired by human
perception in the dark, we use force signals from probe-granule
interactions along a spiral path. Our multimodal approach
combines frequency-domain force data with descriptive text
labels, achieving 84.10% classification accuracy. It outperforms
traditional supervised learning by 10% and supervised con-
trastive learning by over 40%, highlighting the benefits of
incorporating text modality. Additionally, our method handles
unseen particles effectively without fine-tuning. Videos are avail-
able at https://sites.google.com/view/gm-class.

I. INTRODUCTION

Understanding the composition of celestial bodies like the
Moon or Mars is crucial for human migration. By developing
an algorithm to classify GMs, we can gain insights into
their properties. This knowledge is vital for planning space
missions and ensuring human safety. Traditional vision-
based methods face challenges in extreme environments,
so, inspired by how humans perceive objects through touch
(Fig. 1-(a)), we propose using a robotic arm to interact
directly with GMs for classification (Fig. 1-(b)).

The contact model in GMs is highly complex, with me-
chanical signals originating from force chains between tools
and granules [1]. Simplified models based on experimental
observations exist [2], [3], but various factors, such as
packing density and particle size, influence the contact forces
[4], as observed in Fig. 1-(e). These factors lead to variations
within classes and similarities between classes, as shown
in Fig. 1-(d), challenging GM classification based solely
on force feedback. Also, the manner of interaction further
affects signal acquisition, which is not accounted for in
simplified models.

To this end, we propose GmClass, a classifier based on
multimodal supervised contrastive learning (MSCL), which
consists of two branches: one extracts features from force
signals acquired during GM manipulation, and the other
focuses on text information related to the names of GM.
This approach effectively learns distinctive granule features
by reducing the distance between samples of the same
class and increasing the distance between different classes
in the feature space. Specifically, we convert the time-
series force data into a single frequency spectrum, enhancing
class separation. The high-dimensional textual information
helps minimize intra-class variance. We also explore the
impact of interaction motion and text prompts and model
generalization. Our original contributions are:
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Fig. 1. (a) In the absence of vision, humans can distinguish objects by the
touch of their fingers. (b) Inspired by this, we propose GmClass utilizing
force feedback from the probe-granules interaction. (c) Spiral trajectory
[5], defined by the circular radius (cr) and advance velocity (av). (d) The
complexity of the probe-granules interaction is reflected in the high inter-
class similarities (green box) and intra-class variations (orange box) in
interaction forces. (e) The enlarging random errors can be observed in the
force data with particle size raising.

• We propose a vision-independent classifier, GmClass,
using forces from the robot-GM contact to identify GMs
and showcase its zero-shot capability.

• We introduce an MSCL framework with frequency and
text encoders, to reduce the high variability of forces in
the same GM.

• We open source codes and the dataset GM10-ts, which
is the first work specifically designed for GMs.

II. METHODOLOGY

The key idea of our GmClass is to convert the time-series
signals with significant differences into frequency-domain
signals, and then leverage MSCL to enable the model to learn
the matching relationship between frequencies and classes.
The overall framework is illustrated in Fig. 2, whose inputs
are the pair of force data and class names, while the output
is the similarity between them.

Specifically, the GmClass consists of two branches: one
for the frequency encoder and the other one for the text
encoder. The frequency encoder is responsible for extracting
frequency features using the Fast Fourier Transform (FFT)
from different granules. In our implementation, we employed
a one-dimensional convolutional neural network (1D CNN)
[6] with different kernel sizes (5, 15, 25, and 50) to interpret
the sequence data at multiple resolutions, and compared
it with commonly used models good at time-series data,
e.g., long short-term memory (LSTM) [7], bi-directional
LSTM (BiLSTM) [8], and Transformer [9]. Also, ResNet
[10] is considered. On the other branch, the text encoder
is designed to extract features from textual information.

https://sites.google.com/view/gm-class


Fig. 2. The framework of GmClass.

In this case, we utilized the pre-trained text encoder from
Contrastive Language-Image Pre-training (CLIP) [11]. The
textual information is derived from the semantic processing
of particulate matter classes. During the test, we input a
sequence of force data and all possible GM text labels.
Therefore, it is tested whether the trained GmClass can
correctly classify the types of particles from the mechanical
signal.

We present our dataset, GM10-ts (as shown in Fig. 3),
consisting of time-series force signals obtained during the
robotic manipulation of 10 commonly found granules in
daily life. The dataset contains 5000 data points, with 500
instances for each granule.

Fig. 3. Experiment setup and dataset generation for GM10-ts.

III. RESULTS

In this section, we conduct extensive experiments to test
GmClass and compare it with conventional supervised learn-
ing (SL) and supervised contrastive learning (SCL) methods.
We also study the effects of the feature extraction model, data
modality, ranking trajectory in data collection, text encoder,
and textual prompt on classification accuracy.

A. Classification Results

In Tab. II, our GmClass achieves the highest classification
accuracy of 84.10%. This is 40% higher than the SCL
(highest at 41.40%) and about 10% higher than the SL
(highest at 74.90%). We compare different feature extraction
models for GM classification, including 1D CNN, ResNet,
BiLSTM, LSTM, and Transformer. We find that 1D CNN
and BiLSTM perform well on time-series (TS) data, while
1D CNN shows good performance on frequency-series (FS)
data as well. The Transformer model exhibites similar per-
formance on both TS and FS data. Next, we compare the
classification accuracy of GmClass with SCL. We replace
the text encoder with the frequency encoder from the lower
branch in Fig. 2 in SCL. We also train the model using

TS data without performing FFT. We use 1D CNN as both
frequency and time encoders in SCL due to its good feature
extraction capability. Additionally, we replace the CLIP text
encoder with Sentence-BERT [12] in MSCL, therefore, we
have MSCL-C and MSCL-B denoting the variants of MSCL
using CLIP and Sentence-BERT, respectively. From Tab. II,
we observe that MSCL achieves significantly better results
than SCL. With TS data, MSCL outperforms SCL by more
than 10% (MSCL-B) and more than 30% (MSCL-C). When
using FS data, MSCL shows even more improvement, with
an increase of approximately 30% (MSCL-B) and over 60%
(MSCL-C) in performance. This highlights the importance
of utilizing multiple modalities to enhance classification
accuracy. The best classification result for SCL is 41.40% on
TS data, while MSCL-B performs similarly on TS and FS
data (52.90% and 50.50%, respectively). MSCL-C achieves
a significantly higher accuracy of 74.00% on TS data,
approaching the best result in SL (74.90% from 1D CNN).
By incorporating FS data into MSCL-C, the classification
accuracy is further boosted by approximately 10%, resulting
in the highest performance of 84.10%.

TABLE I
CLASSIFICATION ACCURACY FOR VARIOUS PROMPTS.

Prompt (a) ‘This is <gm name>.’ (b) ‘<gm name>’

Acc. 84.10% 81.80%

Prompt

(c) ‘This is <gm name>, whose <property.name>
is <property.value>.’

‘particle size’ ‘particle shape’ ‘roughness’ ‘weight’ All

Acc. 82.30% 82.10% 82.10% 81.80% 79.70%

Prompt
(d) ‘<property.name> is <property.value>.’

‘particle size’ ‘particle shape’ ‘roughness’ ‘weight’ All

Acc. 24.50% 17.80% 17.60% 22.60% 59.60%

B. Effects of Raking Trajectory
In addition, we also generate a dataset sampled from linear

motion, instead of spiral trajectory, to compare the effects of
different robot-particle interactions on classification results.
Results based on the linear path are provided in Tab. II.
SL results on FS data are inferior to TS data (Fig. 4-(a)).
SCL performs similarly on both modalities, while MSCL
performs better on FS data. Spiral trajectory consistently
outperforms linear trajectory, with 1D CNN, BiLSTM, and
MSCL showing significant improvements. In the frequency
domain, models based on spiral trajectories achieve higher
classification accuracy. Overall, from Fig. 4-(b)(c), it shows
spiral trajectories provide richer information for classifica-
tion.

C. Effects of Text Encoder
Comparing SCL and MSCL results, the addition of seman-

tic modality significantly improves classification accuracy.
In the linear trajectory case, MSCL-C outperforms MSCL-
B by 20% from Tab. II. Considering the spiral trajectory,
MSCL-C achieves 20% improvement in the time domain and
30% improvement in the frequency domain, reaching the best
performance of 84.10%. This shows that CLIP’s text encoder
creates a feature space more suitable for classification tasks
through contrastive learning compared to BERT.



TABLE II
CLASSIFICATION ACCURACY FOR DIFFERENT LEARNING METHODS, MODELS AND MODALS.

Method Supervised Learning SCL Multimodal SCL

Model 1D CNN ResNet BiLSTM LSTM Transformer 1D CNN 1D CNN - BERT 1D CNN - CLIP

Modal TS FS TS FS TS FS TS FS TS FS TS FS TS-Text FS-Text TS-Text FS-Text

Linear traj. 46.89% 32.67% 33.22% 11.00% 42.44% 33.56% 26.78% 11.67% 34.40% 35.56% 28.00% 27.33% 24.77% 46.44% 44.11% 66.00%

Spiral traj. 74.90% 70.90% 54.40% 10.50% 73.90% 55.50% 56.60% 8.40% 55.20% 52.70% 41.40% 22.20% 52.90% 50.50% 74.00% 84.10%

Fig. 4. Classification results of various models, data modalities, raking trajectories in data collection, and prompts. (a) Using TS and FS data from the
linear trajectory. (b) Using TS data from linear and spiral trajectories. (c) Using FS data from linear and spiral trajectories. (d) Using different prompts
based on FS data from the spiral trajectory.

D. Effects of Prompt

1) GM Name: The best performance, 84.10%, is achieved
when the prompt is “This is” followed by GM class names
(Tab. I-(a)). Directly sending GM class names to the text
encoder results in a slight drop in classification accuracy
(81.80% from Tab. I-(b)), aligning with previous findings on
the impact of different prompts [11].

2) GM Name + GM Property: In addition, we enhance the
textual information by considering granular properties such
as particle size, shape, roughness, and weight (see Tab. III).
The experimental results in Tab. I-(c) and Fig. 4-(d) show that
incorporating a single granule property has a similar impact,
with accuracy fluctuating by 0.5% (81.80% to 82.30%), all
lower than the case without GM property. Incorporating all
four properties further decreases classification accuracy.

3) GM Property: We also evaluate a scenario where the
prompt provides granule property features instead of class
information (Tab. I-(d)). We mask the GM class during
training and assess the model’s accuracy in predicting prop-
erty values. Results in Fig. 4-(d) show a sharp drop in
classification accuracy when the <gm name> cue is missing,
especially when training on a single property. However,
including prompts with all four properties significantly im-
proves accuracy, reaching 59.60% (Fig. 4-(d)). This result
ranks third among models trained on FS data from the spiral
trajectory, following the 1D CNN model in SL (70.90%)
and MSCL-C (84.10%) (Fig. 4-(c)). Comparing Tab. I-(c)
and (d), or Fig. 4-(d), reveals the positive impact of GM
class names on granule classification. GM names provide
direct cues and the CLIP model’s text encoder captures
semantic information, enhancing classification capabilities by
differentiating inter-class similarities.

E. Zero-shot Classification

The unexpected outcome of MSCL in Tab. I-(d) sur-
passing some SL models prompts further investigation into
the model’s zero-shot transfer learning. We conduct zero-

TABLE III
PROPERTY VALUES OF GM, WHICH WOULD BE USED AS ADDITIONAL

TEXT INFORMATION IN THE TRAINING PROCESS OF MSCL.

<gm name>
<property.name>

‘particle size’ ‘particle shape’ ‘roughness’ ‘weight’

baysalt medium rough non-circular heavy
broad bean large smooth non-circular medium
cassia seed medium smooth non-circular medium

cat litter medium rough circular heavy
crushed peanut small rough non-circular medium

gravel medium rough non-circular heavy
in-shell peanut large rough non-circular light
long-grain rice medium smooth non-circular heavy

refined salt small rough circular heavy
sand small rough circular heavy

TABLE IV
ZERO-SHOT CLASSIFICATION USING FOUR GRANULAR PROPERTIES TO

DESCRIBE UNSEEN PARTICLES WITHOUT GM NAMES. THE italics

DENOTE THE UNSEEN PROPERTY VALUES IN THE TRAINING.

<gm name>
<property.name>

Acc.
‘particle size’ ‘particle shape’ ‘roughness’ ‘weight’

pearl rice medium medium quite smooth little heavy 84.20%
small macaroni large irregular rough very light 77.20%
large macaroni very large irregular rough very light 68.80%
sunflower seed large irregular smooth quite light 63.20%

mung bean medium regular quite smooth much heavy 45.20%
red bean large regular quite smooth much heavy 19.00%

shot classification experiments using a pre-trained model of
Tab. I-(d). Unseen GM classes with new textual descriptions
(Tab. IV) are defined. From Tab. IV, the pre-trained model
shows zero-shot transfer capability, that effectively classifies
force information of unseen particles (in the frequency
domain) into corresponding property descriptions, e.g., pearl
rice, indicating a preliminary understanding of the correlation
between mechanical signals and GM properties. However,
the model’s resolution performance is subpar for certain
granule types like mung bean and red bean, as observed in
the experiments.
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