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Abstract—Robots ought to fuse vision and touch data to
predict how a deformable object reacts during manipulation
in unstructured settings. Estimating such a visual-tactile model
usually requires a lot of data since vision suffers from occlusion
and touch data is sparse and noisy. This paper proposes a
novel method, structured Bayesian meta-learning (SBML), to
allow data-efficient visual-tactile model estimation for diverse
and heterogeneous deformable objects. SBML uses perception to
define an object structure that establishes a common parameter
space for all meta-training and testing objects, regardless of
size and shape. SBML was applied to the recently proposed
volumetric stiffness field (VSF) visual-tactile model. Experiments
show that in two classes of heterogeneous objects, namely plants
and shoes, SBML outperforms existing approaches in terms
of force and torque prediction accuracy in zero- and few-shot
settings.

I. INTRODUCTION

Vision alone cannot accomplish robust deformable object
manipulation in unstructured settings and fusing tactile infor-
mation with vision is essential for many tasks. A visual-tactile
model that predicts how a deformable object reacts during
manipulation enables manipulation in clutter [8], assistive
dressing [5], and complaint tool usage [10]. Estimating a
visual-tactile model usually requires a lot of data (e.g. 30k
transitions in [10]) since vision suffers from occlusion and
touch data is sparse and noisy. To learn models efficiently,
past work has assumed restricted contact regions during tool
usage [17, 2], homogeneity of the object [6, 14, 15], or
sim2real transfer of the visual-tactile model [4, 16]. These
assumptions reduce the representation power (i.e., capacity)
of the visual-tactile models.

In this paper, we present a few-shot learning method to build
high-capacity visual-tactile models of an object using vision
data and a small number of touches. Our approach builds a
prior distribution of visual-tactile models from visual-tactile
experience from related objects, and addresses the few-shot
learning problem as an estimation of a Bayesian posterior.
This general approach is known as Bayesian meta-learning
[7, 19]. For example, the experience that plants’ leaves are
usually soft while branches are usually stiff will help build
accurate models of a novel plant. Moreover, the model should
improve quickly from zero- to few-shots of experience on a
novel plant.

Standard Bayesian meta-learning methods assume fixed
dimensional input and output spaces, but visual-tactile models
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Fig. 1. Our structured Bayesian meta-learning (SBML) approach enables few-
shot learning of a novel plant’s force response using experience interacting
with past plants. The bottom two rows compare our SBML method against
a stiffness estimator using naı̈ve uniform Gaussian prior. In the zero-shot
prediction (left column), SBML already estimates the trunk and branches as
stiffer than the leaves and its predictions improve as it touches the plant. Based
on the touched region (top row) and tactile feedback (second row, norm of
joint torques over time), the updated estimates after each touch are shown
in columns 1–4. The naı̈ve prior needs at least 10 touches to reach accuracy
comparable to our method’s zero-shot estimate (see Tab. I).

of different deformable objects have a different number of
state variables and material parameters. For example, the
finite element models of two objects have different mesh
structures. We introduce a novel structured Bayesian meta-
learning (SBML) approach that accommodates diverse struc-
tures S that capture the object’s spatial structure as well as
visual appearance. The structural components S connect meta-
parameters from a “universal” fixed-dimension space to the
primary visual-tactile model on the object’s computational
mesh. We then apply a hierarchical Bayes maximum likelihood
estimation approach to learn the meta-parameters. The learned
meta-parameters can leverage a novel object’s structures to
predict material parameter priors, enhancing online few-shot
estimation accuracy.

We use SBML to estimate structured deformable object
models of heterogeneous plants and household objects. We
apply the method to the recently developed volumetric stiff-
ness field (VSF) approach [18] with tens of thousands of
parameters. Our approach improves the performance of VSF
above uninformed baselines and an unstructured state-of-the-
art meta-learning approach and an informed prior generated
by SBML can be seen qualitatively in Fig. 1. We examine
SBML’s performance with different meta-training datasets and



show its adaptability to various structural assumptions, such
as foundation model features (DINOv2).

II. METHOD

A. Structured Bayesian meta-learning
A standard meta-learning problem has input x ∈ Rm and

output y ∈ Rn. We assume that each output y follows a distri-
bution y ∼ P (Y |x, α) conditioned on both the input variables
x and an unobservable task α. A meta-training dataset D =
{Dα |α = 1, . . . , L} has data from multiple tasks. The online
learning task is to predict P (y|x, α∗) for a novel task α∗ given
data from a support set D∗ = {(xi∗, yi∗) | i = 1 . . . , N∗}, from
the zero-shot (N∗ = 0) to the few-shot (small N∗) cases.

We approximate the likelihood using a parameterized func-
tion P (y|x, α) = f(y;x, θ), where θ ∈ RM are the learnable
model parameters. Bayesian meta-learning learns a distribution
of model parameters θ ∼ P (θ|ψ) from the meta-training
dataset D [7, 19]. P (θ|ψ) is the prior of model parameters and
ψ are the meta-parameters shared across tasks. Given online
data, we can first find a maximum a posteriori (MAP) estimate
θ̂ for the novel task α∗ and use it to predict y from x.

Standard Bayesian meta-learning assumes the same para-
metric function maps x to y across all tasks. This assumption
does not hold when tasks have varied input-to-output mapping
structures, like visual-tactile model estimation. Here, the task
α indicates the specific object being interacted with. When
objects are heterogeneous and diverse, each object has a
different number of parameters θα to estimate, i.e., θα = RMα .

SBML assumes that a task-specific structure Sα is instan-
tiated for each task α from an auxiliary structure genera-
tion module, outside the learning pipeline. The model output
distribution is conditioned on both input and structure, i.e.
f(y;x, θα) ≡ f(y;x, θα,Sα). The meta-parameters can be
learned through the maximum likelihood estimation(MLE)
similar to [7]:

ψ̂ = argmax
ψ

∏
α=1,...,L

∫
θα

P (Dα|θα,Sα)P (θα|ψ,Sα)dθα

(1)
and the parameters of a novel task can be estimated as

θ̂∗ = argmax
θ∗

∏
(xi,yi)∈D∗

f(yi;xi, θ∗, S∗)P (θ|ψ, S∗) (2)

where each task’s model parameters depend on the task-
specific parameter space RMα as shown in Fig. 2.

B. Structures in Visual-tactile estimation
We can naturally instantiate object-specific structures for

visual-tactile estimation problems. Before interacting with the
object, we construct a structure Sα consisting of a compu-
tational mesh Mα, visual features for elements in the mesh
vα. The computational mesh Mα has nα particles and mα

elements (subsets of particles). The ith particle has position
pti at time t.

At time step t, the robot executes action at (e.g., joint
position commands) and it receives tactile and visual observa-
tions zt (e.g. F/T readings and RGBD images). In the meta-
learning framework, a touch comprises an input-output pair
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Fig. 2. An overview of the structured Bayesian meta-learning method.

x = (a1, . . . , aT ) and y = (z1, . . . , zT ). The object state st is
particle displacements {pti}i=1,...,nα

.
In our formulation, θα denotes the material parameters,

representing the object’s time-invariant properties, such as
Young’s modulus. For simplicity, our implementation assumes
that the state trajectory is a deterministic function of actions
and material parameters, governed by the dynamics model
st = Dyn(st−1, at; θα) with known s0. Finally, the obser-
vation model is given by zt ∼ P (Zt|st, θα,Sα). The touch
observation likelihood f(y;x, θ,S) is simply a product of
observation likelihoods:

f(y;x, θα,Sα) =
T∏
t=1

P (zt|st, θα,Sα) (3)

Here, the trajectory s0, . . . , sT is determined by rolling out the
prediction st = Dyn(st−1, at, θ). Hence, the remaining part
of implementing (1) and (2) is defining the prior P (θα|ψ,Sα)
that maps fixed-dimensional meta-parameters ψ to material
parameters θα.

C. Efficient implementation with Gaussian likelihoods

We efficiently implement (1) and (2) for the Volumetric
Stiffness Field (VSF) model and linear-Gaussian approxima-
tions of the observation model.

A VSF defines a volume of independent particles that
resist displacements from their rest position with Hookean
springs. This model has ∼ 105 highly redundant parameters
for densely sampled points. The structure defined by a VSF
consists of a computational mesh Mα with nα particles and
mα = nα springs. Each particle responds to displacement
with a Hookean reactive force f ti = −Kα,i · (pti − p0i ), with



Kα,i the stiffness of this spring. The material parameters are
the stiffness of each spring θα = {Kα,i}i=1,...,n. The VSF
implementation leads to a material-independent simulation,
i.e. stα = Dyn(st−1

α , atα,Sα), where st ∈ R3nα represents
the particle displacements.

We consider tactile observations zt to be joint torques
τ t or 1-d pressure readings, which are linear observations
of force f ti as well as Kα,i. Assuming Gaussian noise in
zt, the online MAP problem (2) becomes a quadratic pro-
gram (QP) solved using CVXPY [3]. We consider visual
features mapped to each particle vα,i and use Gaussian prior
Kα,i ∼ N (µψ(vα,i), σ

2
ψ(vα,i)). Evaluating (1) requires an

integration over material parameters θα, which has closed
form because the transition and observation models are linear-
Gaussian using standard methods from Kalman filtering. The
optimization problem was implemented using differentiable
operations in PyTorch [12] and the Adam [9] optimizer.

III. EXPERIMENTS AND RESULTS

A. Benchmark datasets

We acquire two benchmark datasets: 1) plants with 12 artifi-
cial plants and 7-d joint torques reading on Kinova Gen3 robot
arm, and 2) shoes with 23 shoes and 1-d Punyo sensor pressure
reading [1]. Several thousand touches are generated uniformly
at random and each dataset is split into training, validation,
and testing sets with multiple objects. We experiment with
different training datasets, broad with all training examples
and narrow with objects similar to test objects as in Fig. 3.

B. Implementations

VSF particles are sampled from the object’s surface and in-
terior [18]. We use pre-trained DINOv2 [11] to generate dense
visual features vα, and the image space visual features are
projected to 3D space and linearly interpolated. The meta-prior
is a multi-layer perception (MLP) and outputs the mean and
covariance of a Gaussian distribution. The meta-parameters
ψ are weights of qithe neural network. The joint torques τ t

are computed using Jacobian transpose, and pressure δpt is
proportional to the sum of each point’s force magnitude.

We compare our method with two baselines: a) Non-
structured meta-learning with tactile data only and no object-
specific structure. An MLP takes arm joint angles at and
outputs a tactile observation τ t or δpt, meta-trained and
adapted using iMAML [13]; b) Structured model with naı̈ve
prior that uses “vanilla” VSF model without vision where prior
assigns the same Gaussian distribution to all particles. The
mean and variance are from the offline meta-learning dataset.

C. Qualitative and Quantitative Results

We train SBML on the plants and shoes training sets, and
qualitatively visualize the zero-shot prediction and adaptation
in Fig. 1 and Fig. 3. We observe that the zero-shot stiffness
estimates qualitatively correspond to our intuition, with stiffer
estimates at the trunk of plants and the toes of shoes. SBML
performs best when the training and testing distributions
closely align, as shown in shoes’ tongue stiffness prediction.
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Fig. 3. Effects of the meta-training dataset on k-shot predictions. The first
row after the test object shows the touched region (blue). The stiffness color
map is in the log scale. We only show one object in the test dataset.

We show quantitative prediction accuracy on the Plants
test dataset in Tab. I. The evaluation metric is prediction
accuracy on a query set disjoint from the support set, in Nm
for joint torques. The last row shows the VSF prediction
error with many touches (>34 touches). The SBML prior
has lower zero-shot prediction errors and quickly improves
with online support data, achieving near-max-shot accuracy by
10 shots. This underscores the value of incorporating visual
information to learn object material properties. In contrast, the
iMAML baseline has slow adaptation without knowledge of
object structure, the vanilla VSF has much worse zero- and
few-shot prediction accuracy with naı̈ve Gaussian prior. Both
baselines have 10-shot prediction accuracy far from the many-
shot result. Using different meta-training datasets for plants
has no significant difference.

TABLE I
JOINT TORQUE PREDICTION ERROR (NM) OVER QUERY SET ON PLANT

BENCHMARK TEST SET OBJECTS.

iMAML
(broad dataset)

Gaussian prior
(average)

SBML prior
(narrow dataset)

SBML prior
(broad dataset)

0-shot 3.95 ± 0.85 5.23 ± 0.00 2.82 ± 0.04 2.80 ± 0.05
1-shot 5.71 ± 3.52 5.04 ± 0.04 2.78 ± 0.03 2.76 ± 0.05
5-shot 5.10 ± 2.16 4.42 ± 0.07 2.71 ± 0.05 2.67 ± 0.05
10-shot 4.40 ± 0.93 3.88 ± 0.09 2.66 ± 0.03 2.61 ± 0.04

VSF many-shot 2.57

IV. CONCLUSION

We introduced a novel structured Bayesian meta-learning
(SBML) approach for efficient visual-tactile model estimation,
enhancing prediction accuracy on new objects by transferring
offline knowledge from objects with various sizes and shapes.
Our method surpasses non-informed and non-structured meta-
learning techniques in zero- and few-shot accuracy, as shown
by tests on plant and shoe datasets.
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