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I. INTRODUCTION

This study focuses on shape estimation of underwater
remotely operated vehicle (ROV) tethers to be used in robot
control for path following or obstacle avoidance. A fixed-
length cable only subject to its own weight can be modeled
as a catenary. However, the extension of the catenary model
to a moving ROV’s tether is not straightforward due to
hydrodynamic effects. Assuming no dynamic effects the
tether’s shape can be estimated from the relative position
of the two attachment points and the catenary model such as
in [1], [2] and from the local cable tangent orientation [3].
But as soon as the robot velocity increases, underwater drag
involves hydrodynamic forces that move the cable from its
vertical plane, even at low speed [4].

The main contribution of the present study is the intro-
duction of a new enhanced catenary model that incorporates
full tilting of the tether during surge or sway motion of the
underwater robot. The relevance of this geometric model is
confirmed through experiments conducted on eight cables
with different mechanical properties (Fig. 1).

II. RELATED WORK

Underwater ROV tether shape can be estimated from the
measurements of inertial sensors placed along it [5]. How-
ever, these methods require the use of a specially designed
cable. In addition, the accuracy of these methods decreases
with the cable’s length due to error accumulation.

Other strategies make use of physical or geometrical cable
models. A physical model can be developed based on the
cable’s hydrodynamics and the forces acting upon it [6], [7],
[8], [9]. Although such models are the most comprehensive
and designed to closely match the physics, they are compu-
tationally intensive and require an extensive understanding
of multiple parameters which are difficult to measure under
actual circumstances, such as water current or thruster param-
eters. As a result, simpler models are often preferred. The
cable may be constrained to a simplified geometric shape
artificially, for instance by introducing weights or sliding
floaters to make it piecewise linear [10], [11], [12]. Some
studies employ the catenary model, a hyperbolic curves,
for underwater or aerial settings with an adequate cable
that conform to the model’s hypothesis [13], [3], whereas
parabolic curves may also be utilized in aerial scenarios [14].
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Fig. 1: Experimental setup. A dark red cable connects the
ROV to a fixed point. Optical markers are regularly placed
on the cable for underwater motion tracking. The slack light
yellow tether is used for communications with the ROV.

III. MODELING AND ESTIMATION

Let Fw = (Ow,xw,yw, zw) be a fixed Cartesian reference
frame with the zw-axis vertical and pointing upwards.

A. Standard catenary model

The shape of a homogeneous hanging cable, with fixed
length L, only subjected to its weight and buoyancy, is
defined by a standard catenary curve (Fig. 2). The catenary
lies in a vertical plane Pv = (Ov,xv, zv), associated to
the Cartesian frame Fv = (Ov,xv,yv, zv) where Ov is the
lowest point of the curve, xv is horizontal and zv is collinear
to zw. Curve points coordinates (vX, vZ) ∈ Pv are given by:

(vX, vZ) ∈ [vXi,
vXf ]× R such that

vZ =
cosh (vXC)− 1

C
(1)

where C ∈ R∗
+ is the catenary parameter, and indexes i and

f refer to the curve’s endpoints. The left superscript indicates
the frame in which a coordinate is given.

B. Augmented catenary model

As soon as the underwater cable is moved fast enough,
hydrodynamic forces become non-negligible. The drag forces
dampens the movement with an amplitude that is propor-
tional to the square of the speed. This effect is ampli-
fied by the added mass when significant accelerations are
present [15], [6].

In the steady state case where all points on the cable move
at the same velocity, they are subjected to the same drag
forces. As a consequence, the resulting uniform acceleration
of the cable is tilted, and its intensity is increased depending
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Fig. 2: Catenary curve of length L defined in Pv . Parameters
are the sag H , the difference of elevation ∆H and the
horizontal distance l between attachment points.
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Fig. 3: Standard (blue) and γ-augmented (red) catenary for
γ = 10◦.

on the velocity. The addition of two degrees of freedom in
the cable shape model to account for this effect is used here
to extend the standard catenary model.

The first degree of freedom is a rotation of angle γ around
the catenary axis e, which is defined as the unit vector that
connects cable endpoints [3] (Fig. 3). This is to consider the
deformations of a tether subjected to sway motions, i.e. the
cable ends move out of the vertical plane, namely Pv . This
rotation applied to Fv and Pv gives Fγ = (Oγ ,xγ ,yγ , zγ)
and Pγ , respectively.

Then, the second degree of freedom, a rotation of angle θ
in Pγ (Fig. 4), considers tether deformations caused by surge
motions, i.e. the two cable ends get closer or further from
each other. The approximation of uniform hydrodynamic
forces along the cable results in a uniform tilted acceleration
aθγ with respect to gravity. Let Fθγ = (Oθγ ,xθγ ,yθγ , zθγ)
be the associated Cartesian frame where zθγ is parallel to
aθγ and yθγ is parallel to yγ . The two ends of the cable can
be expressed in Fθγ and (1) is used to construct the oriented
catenary. This 2-DOF model is named the θγ-augmented
model.
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Fig. 4: γ-augmented (red) and θγ-augmented (green) cate-
nary for θ = 45◦.

C. Curvilinear discretization and residual

Let us consider n+ 1 3D measurement points distributed
along the cable’s length. Accordingly, the model is dis-
cretized with respect to the curvilinear abscissa.

Henceforth, the symbols m, v and θγ are used as in-
dexes referring to the measurements and the estimates of
the standard and θγ-augmented catenary model variations,
respectively. Model points are written:

wP∗
k = (wX∗

k ,
wY ∗

k ,
wZ∗

k)

k ∈ {0, . . . , n}, ∗ ∈ {m, v, θγ}
where indexes k = 0 and k = n are the tether endpoints,
also indexed i and f . The residual is then written:

ε∗P =
1

n

n∑
k=0

∥wPm
k − wP∗

k∥, ∗ ∈ {v, θγ} (2)

D. Model parameters estimation

1) Catenary parameter: Let L be the tether length, l
the horizontal distance and ∆H the difference of elevation
between the tether attachment points calculated from the
measurements of the initial and final attachment points ♢Pm

i

and ♢Pm
f , with ♢ ∈ {v, θγ} the frame in which the points

are expressed (Fig. 2). The catenary parameter C is estimated
by finding the root of function f which relates the curve’s
length and C [13] (using Brent’s method [16]):

f(C) = C2
(
L2 −∆H2

)
− 4 sinh2(lC/2)

2) Augmented model parameters: Let εθγP (θ, γ) be the
residual written as a function of θ and γ (2). Angles θ and
γ are estimated by minimizing this function by means of the
trust region reflective algorithm [17]:

(θ, γ) = argmin
(θ,γ)∈[−π,π]2

εθγP (θ, γ)

IV. EXPERIMENTS

The experiment involves a 3m weighted seamstress rope
as the ROV’s mock cable. Its mechanical properties make it
an ideal subject for modelization with the catenary model.

The experiment is set up in a 7.2m long, 4.2m wide
and 3m deep tank. One end of the cable, namely wPm

n ,
is attached to a ROV (BlueROV), while the other, namely
wPm

0 , is fixed and attached to the side of the pool (Fig. 1).
The cable’s and robot’s positions are recorded by a 5-

camera, 100Hz Qualisys1 underwater motion capture system.
The robot as well as the cable are equipped with passive
reflective markers and the cable’s markers are evenly spaced
out by 0.2m (n = 15). The calibration of the motion capture
system gives a standard deviation of 2.2mm across the pool’s
volume for a known object’s length. The points wPm

k are
measured in the Qualysis world Cartesian frame which is
defined by the positioning of a calibration target that may not
be perfectly vertical in the real experiment. This introduces
a small offset (±0.05 rad) for the steady state angles as can
be seen in Fig. 6.

1See specifications at www.qualisys.com/cameras/underwater
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Fig. 5: Top view of the experimental trajectories. Circles
refer to initial positions and crosses refer to final positions.

The initial position of the robot is defined such that
the robot is stabilized at 1m depth and approximately
1m from the lateral pool wall facing the fixed attachment
point (Fig. 5). Surge and sway movements are conducted
individually to investigate the cable’s response movement
within or without its original vertical plane. The robot repeats
the same open-loop control in sway or surge with the same
step profile: 1) stabilisation with auto-depth at 1m depth for
2 s, 2) abrupt start with constant surge or sway command
applied for 2.5 s, 3) reversing of the thrusters for 0.3 s with
a doubled velocity of opposite direction, to obtain an abrupt
stop, 4) slow down the thruster for half the initial velocity
during 0.2 s and 5) deactivation of the auto-depth control and
complete stop of the thrusters after 13 s. The robot then drifts
slowly.

The experiment is repeated three times, under six experi-
mental conditions, which makes it possible to test the reac-
tions of the cable with accelerations of different amplitudes.
Each experimental condition is a combination of a direction
of motion (sway or surge), a speed (0.3m s−1 or 0.6m s−1)
and a starting point characterized by its horizontal distance
from the fixation point (about 1.5m or 2m).

Fig. 6 shows the model variants residuals, angles θ and γ,
as well as the robot’s speed. These figures show in detail the
different phases of the movement: an initial stable position
(hydrostatic equilibrium phase), an abrupt start (dynamic
phase), a phase of continuous application of a constant
command (steady state phase), an abrupt stop (dynamic
phase) and a subsequent hydrostatic phase.

A clear correlation appears between the robot’s dynamics
and the angle γ for sway motion. The estimated γ angle
consistently increases with speed during sway movements,
whereas θ remains close to zero (Fig. 6a). For surge motion
both angles increase with velocity, with θ being greater than
the one observed for sway movement (Fig. 6b). However,
since γ is larger than expected, let us examine the trajectory
displayed in Fig. 5 relative to surge motion with 0.6m s−1

and 2m. While the primary motion is surge, the trajectory of
the robot is not precisely aligned with the fixed point causing
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(a) sway motion.
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Fig. 6: Model residuals, robot speed and θ, γ angles over
time. Speed command of 0.6m s−1 and 2m distance.

the cable to move laterally. Although this effect is present
throughout all sequences, it is particularly pronounced in this
trajectory which explains the values for γ. This demonstrates
that our θγ-augmented model is capable of simultaneously
managing significant sway and surge movements.

V. CONCLUSION

This work introduced an augmented catenary model that
accounts for the hydrodynamic effects on the tether when
the ROV performs surge and sway motion. It incorporates
the models presented in the state of the art, which can be
found by zeroing one or both of the angles proposed as
augmentation parameters.

The results drawn from the experiments carried out on
the chosen cable show that the augmented model provides
a better estimate of the shape during dynamic phases, com-
pared with the standard catenary model. The accuracy of
the model for the cable relies on its relatively high weight
and flexibility, as such their measured shape features greater
planarity and homogenous tilting of their support plane
during motion.

In light of these results, the augmented catenary model will
be used in model-based controllers to estimate cable shape
and its lowest position for deployment scenarios of tethered
robots.
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