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Movement Primitive Diffusion: Learning Gentle
Robotic Manipulation of Deformable Objects

Paul Maria Scheikl1, Nicolas Schreiber2, Christoph Haas2, Niklas Freymuth2,
Gerhard Neumann2, Rudolf Lioutikov2, and Franziska Mathis-Ullrich1

Abstract—Policy learning in robot-assisted surgery (RAS) lacks
data efficient and versatile methods that exhibit the desired
motion quality for delicate surgical interventions. To this end,
we introduce Movement Primitive Diffusion (MPD), a novel
method for imitation learning (IL) in RAS that focuses on gentle
manipulation of deformable objects. The approach combines
the versatility of diffusion-based imitation learning (DIL) with
the high-quality motion generation capabilities of Probabilistic
Dynamic Movement Primitives (ProDMPs). This combination en-
ables MPD to achieve gentle manipulation of deformable objects,
while maintaining data efficiency critical for RAS applications
where demonstration data is scarce. We evaluate MPD across
various simulated and real world robotic tasks on both state
and image observations. MPD outperforms state-of-the-art DIL
methods in success rate, motion quality, and data efficiency.
Project page: scheiklp.github.io/movement-primitive-diffusion

Index Terms—Surgical Robotics: Laparoscopy; Imitation
Learning; Score-based Diffusion Policies; Movement Primitives

I. INTRODUCTION

ADVANCING the level of autonomy in Robot-Assisted
Surgery (RAS) requires novel methods for training poli-

cies that satisfy the special requirements of surgical applica-
tions. RAS requires the policies to exhibit gentle manipulation
of delicate tissue and perform with limited data as human
demonstrations are costly. Additionally, human behavior is
inherently multimodal [1], covering multiple distinct strategies
for solving the same task. Imitation Learning (IL) methods
that are unable to represent multimodal behavior may exhibit
harmful behavior through mode averaging that is unaccept-
able in surgical settings, e.g., by averaging over two distinct
strategies of dissecting tissue and thus damaging healthy
tissue. Diffusion-based Imitation Learning (DIL) has shown
to perform well on high-dimensional action spaces, generate
multimodal behaviors, and exhibit strong training stability [2],
[3], making it a promising framework for application in RAS.

DIL methods train large neural networks to iteratively
denoise action sequences drawn from a prior Gaussian dis-
tribution to generate motion conditioned on observations.
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Fig. 1: Schematic for action sequence generation with MPD for bimanual
tissue manipulation. Observations o and initial values s0 for position and
velocity are captured on the bimanual robotic setup. An ODE solver solves
the Probability Flow ODE with learnable model EΘ and ProDMP P by
iteratively denoising an action sequence τ̃k for diffusion step k and respective
noise level t. The final denoised action sequence τ0 is executed on the robots.

We propose to add temporal correlations between actions
during motion generation by utilizing Movement Primitives
(MPs) to address both gentle manipulation of deformable
objects and data efficiency in DIL. In other methods, neural
networks output actions sequences directly [2], [3]. In our
proposed method, Movement Primitive Diffusion (MPD), the
neural network outputs parameters of a MP that encode a
denoised action sequence. These parameters are decoded into
smooth position trajectories to enable gentle manipulation of
deformable objects.

Leveraging both MPs and DIL, MPD increases data ef-
ficiency and generates smooth action sequences suitable for
gentle deformable object manipulation in RAS. MPD outper-
forms state-of-the art DIL methods in terms of success rate,
motion quality, and required training data. Further, it integrates
a modern diffusion framework for real-time inference and
guarantees initial conditions for position and velocity. MPD
can be trained on both states and raw RGB image observations,
making it applicable for RAS where images are the only
readily available source of information [4]. Figure 1 illustrates
the action sequence generation of MPD.

https://scheiklp.github.io/movement-primitive-diffusion/
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As baselines, Diffusion Policy [2] and BESO [5] present the
current state of the art in robotic DIL. Both methods iteratively
denoise action sequence samples to generate motion, condi-
tioned on observations. Both works evaluate their methods
against multiple state-of-the-art IL methods and find that DIL
methods outperform non-diffusion-based methods in terms of
success rate, and excel in learning multimodal behaviors. In
this work, we investigate Diffusion Policy and BESO under
the requirements of RAS and show that MPD addresses the
shortcomings of these methods.

II. METHODS

Problem Formulation: We predict action sequences
τ = (τi)i=0...n that consist of k-dimensional values τi ∈ Rk

for the next n time steps relative to the current time. De-
pending on the task, the task space consists of k actuation
Degree of Freedoms (DoFs) such as grasper articulation, and
rotations and translations of surgical instruments in relation
to a remote center of motion. The action sequences are
predicted based on observations o = (oj)j=−m+1...0 from the
previous m time steps. We follow an IL approach and train
our models on a dataset D of human demonstrations d. Each
demonstration is a sequence (τi, oi)i=0..N over one full task
execution with N time steps. For training, the demonstrations
are split into action and observation sub-sequences of lengths
n and m, respectively. We focus on action sequences of length
1 < n < N instead of single actions or full trajectories to
balance compounding errors and online adaptability in real-
world scenarios.

Score-based Diffusion Models: Diffusion Policy [2] re-
verses the diffusion process at discrete noise levels, relying
on probabilistic modeling of the process as a Markov chain.
In contrast, BESO [3] builds on the Score-Based Generative
Model (SGM) framework that describes the diffusion process
as a time-continuous Stochastic Differential Equation (SDE)
and learns the gradient of the log probability density, i.e.,
the score, of the data distribution. This framework allows for
modular selection of, e.g., the noise schedule and numerical
solver [6] and is often computationally cheaper [5]. Both
methods can represent multimodal distributions of action se-
quences [2], [3]. MPD adopts the SGM framework and closely
follows the conventions proposed in [6] and [5].

Movement Primitive Diffusion: We propose MPD, which
combines the advantages of SGMs and Probabilistic Dynamic
Movement Primitives (ProDMPs). In MPD, the inner model
consists of a trainable model EΘ that outputs a weight vector
w. Combined with initial values s0 for position and velocity,
w is decoded into an action sequence τ using a ProDMP.
Conceptually, the model EΘ denoises an action sequence
conditioned on observations and maps it into the ProDMP
weight space. The ProDMP decodes the denoised weights
back into action sequence space. The architecture of MPD
is illustrated in Figure 1.

Utilizing ProDMP, MPD generates smooth, high-frequency
action sequences with guaranteed initial conditions for posi-
tion and velocity. ProDMP further helps modeling temporal
correlations between actions, which increases data efficiency
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Fig. 2: Start, intermediate, and end state of the tasks in simulation. The final
column shows the respective real world experiment. Grasp Lift Touch (GLT)
requires sequential collaboration between instruments, Rope Threading (RT)
and Ligating Loop (LL) depend on accurate alignment deformable ropes,
and Bimanual Tissue Manipulation (BTM) requires concurrent collaboration
between instruments to control the shape of a deformable tissue.

and generates motions that are suitable for gentle manipulation
of deformable objects.

III. EXPERIMENTS

Tasks: In our experiments, we evaluate how well MPD
aligns with requirements for application in RAS, based on
success rate and motion quality. MPD is evaluated on four
different simulated LapGym [7] tasks and their respective
real-world robotic setups, illustrated in Figure 2. The tasks
represent different types of motion such as cooperation of
instruments, grasping, and deformable object manipulation, all
of which are crucial for successful application in RAS.

In Grasp Lift Touch (GLT), two laparoscopic instruments
are controlled to successively grasp and lift a gallbladder,
and touch a target point positioned below the bladder with
an electrocautery hook. The task requires sequential instru-
ment coordination as well as grasping and manipulation of
deformable objects. Three additional tasks, specifically Biman-
ual Tissue Manipulation (BTM), Rope Threading (RT), and
Ligating Loop (LL), are employed to assess the capability of
MPD in controlling the overall shape of a deformable object,
following waypoints, and indirectly manipulating a deformable
object, respectively. MPD is evaluated against three baselines,
namely BESO [3], and two variants of Diffusion Policy [2],
DP-C and DP-T. BESO and DP-T are based on transformers,
while DP-C employs a 1D temporal CNN model architecture.

Motion Metrics: Applications in RAS require specific
motion behaviors in addition to raw success rate of task com-
pletion. Tissue acceleration quantifies surgical performance for
gentle manipulation of delicate tissue [8] and should be mini-
mized to reduce risk of tissue damage. We quantify instrument
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TABLE I: Success rate mean and standard deviation across all simulation
tasks based on 5 trained models and 100 rollouts. The best method is bold,
the second best underlined.

GLT RT BTM LL Average

State Observations
BESO 68.4 (6.8) 90.4 (1.2) 88.2 (3.9) 83.2 (4.8) 82.55
DP-T 100 (0.0) 89.6 (1.9) 98.4 (0.5) 100 (0.0) 97.00
DP-C 100 (0.0) 82.0 (2.3) 93.2 (1.9) 100 (0.0) 93.80
MPD 99.2 (0.7) 93.8 (1.2) 99.0 (0.6) 99.6 (0.5) 97.90

Image Observations
BESO 99.8 (0.4) 66.8 (2.3) 91.4 (2.4) 99.8 (0.4) 89.45
DP-T 100 (0.0) 76.6 (4.5) 95.8 (0.7) 99.8 (0.4) 93.05
DP-C 100 (0.0) 83.2 (1.2) 85.2 (1.3) 100 (0.0) 92.15
MPD 100 (0.0) 78.6 (3.4) 99.0 (1.1) 100 (0.0) 94.40

trajectory smoothness based on minimizing instrument jerk
to increase safety and reduce component wear. We further
characterize the efficiency of the movements by instrument
energy, the sum of accelerations over task execution, which
should be minimized. The three metrics tissue acceleration,
instrument jerk, and instrument energy are evaluated for all
tasks, with the following task specific adaptations to represent
the metrics. For RT, tissue acceleration is measured as the
acceleration of points on the rope. For LL, the instrument
consists of a rigid shaft and a deformable loop, so instrument
jerk is examined for both parts individually. On the real world
tasks, the full state of the tissue is not accessible, so tissue
acceleration cannot be measured directly. However, for BTM-
RW, marker acceleration is tracked as a surrogate.

IV. RESULTS

Success Rate: Table I reports the success rates for all
methods evaluated on the simulation tasks. MPD outperforms
the baseline methods with average success rates of 97.9% and
94.4% for state and image observations. DP-T is the second
best, reaching 97.0% and 93.05%, respectively. MPD and
DP-T consistently improve over the baselines. Most methods
work better on state observations, except for BESO.Yet in total
performance, BESO is still outperformed by the other methods
on image observations. We evaluate MPD and DP-C on real-
world versions of all tasks, omitting the other methods as their
generated trajectories are unfit for execution on the real robot
without significant post-processing.

Motion Metrics: Figure 3 shows the results of the method
on different motion metrics for image observations. The
values are normalized by human demonstration data, so values
below 1.0 indicate better-than-demonstrator motion quality.
The transformer-based methods, namely BESO and DP-T,
show high values for all motion quality metrics. Compared
to BESO, DP-T differs noticeably across different runs, with
min and max values that deviate far from the mean, see e.g.,
tissue acceleration in Figure 3 b). We report min and max
values for the motion metrics instead of the standard deviation
to highlight best- and worst-case scenarios for the methods.
The results across different runs are more bounded for MPD
and DP-C, with min and max values closer to the mean. DP-
C and especially MPD achieve gentle motions whose values
are much closer to the human demonstrations on all metrics.
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Fig. 3: Motion quality evaluation metrics relative to performance of human
demonstrations. The bars show the mean normalized value, with min and
max values as error bars. All methods were trained on image observations.
MPD consistently outperforms the baselines and exhibits even less Instrument
Jerk than the human demonstrations. Real world (RW) tasks e) to h) lack the
Tissue Acceleration metric. BTM-RW uses the Marker Acceleration (MA) as a
proxy for Tissue Acceleration. Abbreviations: Instrument Jerk (IJ), Instrument
Energy (IE).

MPD performs best across all metrics. Using ProDMPs, MPD
generates motions that have noticeably less instrument jerk,
even compared to human demonstrations.

V. CONCLUSION

This work proposes MPD, a novel method for learning
gentle robotic manipulation of deformable objects for RAS.
MPD combines the versatility of DIL with the motion quality
of ProDMPs, facilitating gentle manipulation of deformable
objects and data efficient training that are crucial for surgical
applications. The experiments show the superior performance
of MPD over traditional DIL methods in terms of success
rate, data efficiency, and motion quality. The integration
of ProDMPs allows real-time generation of smooth, high-
frequency action sequences with guaranteed initial conditions,
as required for application in real-world robotic scenarios.

In summary, MPD’s ability to learn accurate, high-quality
motion from limited data makes it a promising approach
for application in autonomous and semi-autonomous surgical
systems. Future research may explore MPD in more diverse
surgical scenarios and its integration with other surgical tech-
nologies, further pushing the boundaries of robotic assistance
in complex medical procedures.
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