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Fig. 1: Our Proposed Framework broadcasts the support relations recursively from the target object using local dynamics between adjacent
objects, and uses the support relation graph to efficiently guide the step-by-step target object retrieval.

Abstract—Garment manipulation (e.g., unfolding, folding and
hanging clothes) is essential for future robots to accomplish home-
assistant tasks, while highly challenging due to the diversity of
garment configurations, geometries and deformations. Although
able to manipulate similar shaped garments in a certain task, pre-
vious works mostly have to design different policies for different
tasks, could not generalize to garments with diverse geometries,
and often rely heavily on human-annotated data. So we leverage
the property that, garments in a certain category have similar
structures, and then learn the topological dense (point-level)
visual correspondence among garments in the category level
with different deformations in the self-supervised manner. The
topological correspondence can be easily adapted to be functional
to guide the manipulation policies for various downstream tasks,
within only one or few-shot demonstrations.

Index Terms—Garment, One-/Few-shot Manipulation

I. INTRODUCTION

Next-generation robots should have the abilities to manipu-
late a large variety of objects in our daily life, including rigid
objects, articulated objects [6] and deformable objects [19].
Compared with rigid and articulated objects, deformable ob-
jects are much more difficult to manipulate, for the highly
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large and nearly infinite state and action spaces, and complex
kinematic and dynamics. Garments, such as shirts and trousers,
are essential types of deformable objects, due to the potentially
wide-range applications for both industrial and domestic sce-
narios. Manipulating garments, such as unfolding, folding and
dressing up, has garnered significant interest in robotics.

There have been a long range of studies on manipulating
relatively simple shaped deformable objects, such as square-
shaped cloths [13], [19], [21], ropes and cables [15], [19],
[21], and bags [2], [4]. Nevertheless, manipulating garments
presents a substantial challenge, as it necessities the compre-
hensive understanding of more diverse geometries (garments
in a certain category have different shapes, let alone in
different categories), more complex states (various geometries
with diverse self-deformations), and more difficult goals (e.g.,
garments require multiple fine-grained actions fold step by
step). Many existing studies on garment manipulation rely on
large-scale annotated data [1], [3], which is labor-intensive
and time-consuming, hindering the scalability in the scenarios
of real-world applications. Besides, many works design quite
different methods to tackle different specific tasks [1], [3],
[18], [23], making it difficult to efficiently share and reuse
information among different tasks.



Fig. 2: Our Proposed Learning Framework for Dense Visual Correspondence. (Left) We extract the cross-deform
correspondence and cross-object correspondence point pairs respectively using self-play and skeletons, and train the per-
point correspondence scores in the contrastive manner, with the Coarse-to-fine module refines the quality. (Middle) Learned
correspondence demonstrates point-level similarity across different garments in different deformations. (Right) The learned
point-level correspondence can facilitates multiple diverse downstream tasks using one or few-shot demonstrations.

Different from other object types, garments possess a
property that, in a certain category, while different garments
may have different geometries, they usually share the same
structure. For example, tops (such as T-shirts, jackets and
jumpers), are composed of certain components (a body with
two sleeves and a collar), and the topological structures of
the components are usually the same, even though the length,
width and geometries of a certain component in different
garments may be quite different. Thanks to such similarity
in structure shared among garments in the category level, it is
easy for humans to fulfill a task on unseen novel garments
using the experience of manipulating only one or a few
garments in the same category. Therefore, we empower robots
with the above one/few-shot generalization ability humans
have in diverse tasks, by leveraging such structural similarity
among garments.

Among multiple ways to describe and represent garments
(e.g., poses [5], [24], lines [8], [26] and keypoints [25]),
skeleton [16], i.e., a graph of keypoints covering significant
points on garment edges and joints to represent the topology
of 3D objects, is suitable for describing the above-mentioned
structures shared among garments. The skeleton points are
sparse, distinct and ordered, and thus (1) exist on each garment
and (2) can easily distinguish with other skeleton points,
making them easy to learn. Therefore, we use skeleton points
to build structural correspondence among garments. Moreover,
as different-extent self-deformations make the garments to be
quite complex, while previous works only studied skeleton
points on rigid [16], articulated [22] or fixed-posed deformable

objects in the canonical view [25], we further extend skeleton
points to garments at any deformation states, making a step to
more realistic scenarios for garment manipulation.

While skeleton points build topological correspondence
between different garments in the skeleton keypoint level, the
state and action spaces of garments are exceptionally large and
each point on the garment could be the manipulation point,
making the sparse skeleton points unable to fully represent
garments for manipulation. To represent objects with large
state and action spaces, dense (i.e., point-level or pixel-level)
object representations, including dense object descriptors [7]
and dense visual actionable affordance [14], which indicate
the actionable information on each point of the object, have
demonstrated its superiority on rigid [7], articulated [20],
and simple-shaped deformable object manipulation [19]. We
further extend dense object representations to garments, with
the awareness of garment correspondences, using the proposed
skeleton points, and thus achieve fine-grained manipulation for
complicated garments.

With dense visual correspondence aware of garment struc-
tures, one demonstration can roughly guide manipulating
a novel garment by indicating corresponding action points
and policies. Furthermore, as manipulation for specific tasks
rely on not only garment structures but also task-specific
knowledge, we further transform the representation from task-
agnostic structural to task-specific functional for more accurate
manipulation in various downstream tasks, using few-shot
demonstrations to achieve this adaptation.



II. FRAMEWORK

A. Overview
Our framework first learns topological dense visual corre-

spondence aware of different garment deformations and shapes
respectively using self-play and skeleton points (Section II-B),
with further coarse-to-fine refinement (Section II-C). There-
fore, the proposed framework could facilitate manipulating
unseen novel garments on various tasks using one or few-shot
demonstrations (Section II-D).

B. Self-supervised Topological Dense Visual Correspondence
The diversity of garments in different states mainly comes

from two perspectives: self-deformations, and styles of objects
in the same category. To empower the Dense Visual Corre-
spondence with the alignment ability for different garments
in different states, we decouple the learning process into two
parts, respectively learning cross-deformation correspondence
and cross-object correspondence.

1) Cross-Deformation Correspondence: Many tasks, such
as unfolding and hanging, require manipulating the garment
at any random states (e.g., after a random drop). As demon-
strated in [9], while garments have complex states and infinite
deformations, the manipulation policies (manipulation points)
are usually invariant to deformations. To empower the model
with the ability to handle garments in different deformations,
we introduce learning correspondence across deformations of
the same garment.

Given two partial observations O and O′ of the same
garment in different deformations generated by self-play, and
a visible point p on O, we can easily get its corresponding
position point p′ in O′ using point tracing in simulation. If
p′ is visible, the representations fp and fp′ ∈ R512 of p and
p′ extracted by the backbone network F, should be the same,
as the representations are agnostic to self-deformations. We
normalize point representations to be unit vectors, and thus
the similarity between fp and fp′ can be computed by the dot
product of fp and fp′ , i.e., fp ·fp′ . For p on O, we use p′ on O′

as the positive point, and sample m negative points (m = 150):
p′1, p′2, ..., p′m. We pull close fp and fp′ , while push away
fp and other point representations. Following InfoNCE [12],
a widely-used loss function in one-positive-multi-negative-pair
contrastive representation learning, we identify the positive p′

amongst m negative samples.
2) Cross-Object Correspondence: In a certain category,

while garments highly vary in original shapes, such as sizes,
length-width ratios, sleeve lengths and styles, they share the
same topological structure. The awareness of such structures
will make it easy to manipulate unseen novel garments with
demonstrations.

To leverage the shared structural information and generalize
to novel shapes, we propose to use skeleton, i.e., a graph of
keypoints that represents topology of the 3D object, as the
shared bridge for different garments with similar structures.
The reasons for using skeleton include:

• Skeleton points are distinct and sparse, thus easy to learn
and generalize, compared to complicated representations;

• Skeleton points are distinct and ordered, making it easy
to build topological correspondence between two objects
by aligning each specific skeleton point on them;

As skeleton points are ordered, given observation O of
a flat garment with one of its skeleton point p, we can get
the corresponding skeleton point p̃ on the observation Õ of
another flat one, by applying the skeleton network on Õ
and get the skeleton point in the same order of p in O.
Then, the topological correspondence between flat garments
have been built in the skeleton-point level. As the features
extracted by neural networks are continuous when point po-
sitions continuously change, and skeleton points cover the
whole garment, the feature of any point can be reflected by
its nearby skeleton points (like interpolation) with topological
information. Therefore, the representation of each point on the
garment will reflect its topology, and dense correspondence
between flat garments has been naturally built.

3) Integration of Cross-Deformation and Cross-Object Cor-
respondence: Since we have designed dense correspondence
between the same garment in different deformations, and
dense correspondence between different flat garments, the
next step is to aggregate them into one dense representation
system on diverse garments in any deformation states.

We first project skeletons of garments in their flat states to
any deformation states using point tracing in simulation. Thus,
given the observation O in random deformation with one of
its skeleton point p, we can get the corresponding skeleton
point p̃ on the observation Õ of another garment in random
deformation. If p̃ is visible on Õ, fp and fp̃ should be the
same. For p on O, we use p̃ on Õ as the positive point, and
sample m negative points (m = 150): p̃′1, p̃′2, ..., p̃′m. We
use contrastive learning for training.

C. Coarse-to-fine Correspondence Refinement

Although above framework can learn the general distri-
butions of all points’ representations using offline randomly
collected data, some difficult details (such as the boundaries
between the folded sleeve on the garment body) should be
paid more attention by the model, and there may exist in-
accurate representations on some points or areas. The above
phenomenon is also demonstrated in previous dense correspon-
dence learning studies for 3D objects [10], [11], [17].

Therefore, we propose the Coarse-to-fine (C2F) Correspon-
dence Refinement procedure to make the model more focused
on difficult points on the garment, and eliminate inaccurate
predictions, by refining the offline trained model using its
online prediction failures.

D. Manipulation Policy Generation

As shown in Figure 1, for novel garments over different
downstream tasks, we can easily generate manipulation poli-
cies by selecting the picking and placing points that are most
close to the demonstrations in the correspondence space.
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