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I. INTRODUCTION

While robots have made significant progress in dexterous
manipulation, most advances focus on rigid objects [1], [2].
However, real-world environments contain numerous kinds
of flexible materials like ropes and fabrics, which present
unique challenges due to their dynamic, underactuated na-
ture. Conventional planning methods are challenged by these
complexities and therefore often avoid dynamic interactions.
This starkly contrasts with humans who excel at manipulat-
ing such objects by leveraging their natural dynamics rather
than suppressing them [3], [4].

Recent machine learning approaches have attempted to
address this problem, but they require extensive data and
computational resources [5], [6]. Alternatively, slow quasi-
static manipulation enhances stability, but fails to exploit the
inherent properties of deformable objects, such as energy
transfer and inertia variation [7]. However, some tasks, like
flipping a rope or cracking a whip, by definition demand
high-speed actions that actively exploit the object’s dynamic
characteristics [8], [9].

To further explore dynamic manipulation of flexible ob-
jects, we focus on whip control: a dexterous task unachiev-
able through quasi-static control alone. Our work aims to
take inspiration from humans to develop a robot controller
hitting a target with a whip. Our prior experimental studies on
human control of a whip revealed that humans spontaneously
move and prepare the whip prior to the focal striking action
to hit a target, similar to a wind-up before a throw. Such
preparatory movements allow the human to set the whip’s
initial conditions, which significantly improved their hitting
success [3] suggesting that this simplified their control of
the underactuated object [10]. However, no specific evidence
could be derived from these naturalistic human data.

To facilitate modeling of the control action and the whip
in order to transfer insights to robot control, we modified
our approach. We developed a simplified 3D-printed whip,
confined to planar motion, and asked humans to execute
striking actions to hit a target. Again, humans naturally incor-
porated preparatory counter-movements [11]. This raises a
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key question: What benefits do these preparatory movements
have and can they be transferred to robots? This study aims
to understand the benefits of this preparatory motion and how
it influences the ability to successfully reach distant targets
and also control effort (defined below).

To this end, we developed human-inspired simulations
using a trajectory planning approach for whip control and
assessed its performance on a robotic system. By generating
minimum-jerk trajectories, our method replicated human mo-
tion fluidity, while enabling systematic analysis of prepara-
tory movements. Simulations suggest that these movements
extend the reachable target range, i.e., hitting success, and
reduce control effort for successful execution. We validate
our approach through sim-to-real experiments on a Franka
Research 3 (FR3) robot moving the same 3D-printed whip.

Our results highlight the advantages of preparatory move-
ments into dynamic manipulation tasks. By leveraging the
natural dynamics of the system, rather than compensating for
them, robots can achieve greater efficiency and adaptability
in tasks involving flexible objects.

II. METHOD
The objective of this study was to study the strategies

humans use to manipulate a 3D-printed whip to hit a target
at a distance. Insights from the human experiment were then
used to develop a trajectory planner to enable a robot arm to
manipulate the whip and strike a distant target with its tip.

A. Human Experiment

Five volunteers (23-30 years, 4 females) were recruited to
manipulate a 3D-printed whip to hit a target. Participants
were naive to the task and gave informed consent using
protocol #16-02-05 approved by Northeastern University. At
the start of each trial, the whip was stationary with all of its
links hanging down. Participants performed hand movements
along the x and z axes in the sagittal plane (Fig. 1 A).
Participants were instructed to perform the task with either
a single striking motion or with an additional backward
preparatory movement. Reflective markers were placed on
the participant’s shoulder, elbow, and wrist; each of the 20
whip links was marked by a small reflective patch of tape.
Twelve Oqus 3+ cameras tracked the movements of the
subject and the whip at a sampling frequency of 100 Hz
(Qualisys, Goetheborg, Sweden) as shown in Fig. 1 B.

B. 3D-Printed Whip

The whip created in this study was constructed from 20
distinct spherical links, each individually 3D-printed with a



Fig. 1. A: Representative manipulation of the 3D-printed whip by a human participant, including the preparatory movement observed in the experiment.
B: Kinematic trajectory of the whip handle (black) and whip tip (red) recorded using a motion capture system for the trial shown in A. C: Trajectory
generated using a minimum jerk model with the human-inspired preparatory movement, implemented on the Franka robot arm to strike the target.

diameter of 50 mm and a mass of approximately 10 g. The
links were connected by steel pins with a radius of 2 mm and
a length of 20 mm (total length: 1 m), forming hinge joints
in a serial arrangement that constrained the whip’s motion
to a plane.

C. Modeling the Whip Dynamics

To model the dynamics of the whip, we adopted an
energy-based approach using the Euler-Lagrange formalism,
expressing the system’s second-order dynamics in matrix
form:

M(q)q̈ + h(q, q̇) = Bu+ J⊺λ (1)

where B is the input matrix, derived by using the prin-
ciple of virtual work. u represents the control input vector,
which applies stiffness and damping at each joint using a
Proportional-Derivative controller. J is the Jacobian matrix,
λ is a vector of Lagrange multipliers, which constrain the
handle’s motion (this term contains the control effort needed
to perform the task).

We assumed all links to be identical in mass, with minimal
stiffness and damping. Our previous study [11] validated this
model, demonstrating its effectiveness in approximating real
whip dynamics, with a mean tip tracking error of less than
5 cm. This modeling approach can also accommodate whips
with varying stiffness, damping, and mass (e.g., tapered
whips), which we plan to use in the future.

D. Trajectory Generation

For human point-to-point movements, it has been shown
that velocity exhibits a bell-shaped profile that is best approx-
imated by a trajectory that minimizes the third derivative of
position (jerk), equivalent to maximizing smoothness [12].
Equation (2) generates such a trajectory from one point to
another over a given duration. We employed this equation to
generate trajectories for the whip handle.

x(t) = xi + (xf − xi)(6τ
5 − 15τ4 + 10τ3)

z(t) = zi + (zf − zi)(6τ
5 − 15τ4 + 10τ3)

(2)

x(t) and z(t) represent the coordinates of a linear 2D
trajectory, where xi and zi denote the initial positions, xf

and zf denote the final positions, and τ (τ = t/tf ) is

the normalized time parameter, with tf representing the
movement duration. The movement is constrained within the
xz-plane, ensuring that the end-effector trajectory remains
planar.

The striking only strategy involves a single set of x and
z trajectories optimized to achieve task requirements. In
contrast, the preparing and striking strategy consists of two
sequential minimum-jerk trajectories: an initial preparatory
movement followed by the main striking motion. In the
preparing and striking approach, the endpoint of the first
movement (x1,f , z1,f ) serves as the starting position of the
second movement (x2,i, z2,i), effectively creating a two-
phase motion plan. To introduce additional flexibility for the
preparing and striking strategy, an overlap parameter was
introduced, allowing partial overlap between the two move-
ments. For instance, with a 25% overlap, the velocity profile
of the last 25% of the first movement was superimposed on
the first 25% of the second movement for both joints. The
whip handle’s position was determined by integrating the
summed velocity trajectory. Consequently, the preparing and
striking strategy was defined by nine parameters: x1,i, z1,i,
x1,f , z1,f , t1,f , x2,f , z2,f , and t2,f , along with the overlap
parameter.

Similar to [11], we used a grid search optimization ap-
proach to identify optimal trajectory parameters for different
target locations. MATLAB’s patternsearch algorithm was
used to identify optimal values for the hand trajectory
parameters to minimize the cost function J :

ei = ∥ptip,i − ptarget∥, Jerror = min(ei)
2 (3)

Jerror =

{
0, if Jerror < 0.012

Jerror, otherwise
(4)

Jeffort =
∑
i

λ2
i , J = αJerror + Jeffort (5)

The optimization cost function was designed to balance
accuracy in striking the target with control effort efficiency.
The positional error at each time step, ei, was defined as
the Euclidean distance between the whip tip position ptip,i
and the target position ptarget. To evaluate task efficiency,
the cost function considers the minimum squared error over



Fig. 2. A: Binary hit map for the two strategies. An error of less than 1cm between the whip tip and target was considered a hit (shown in blue). Farther
targets were only hit with the preparing and striking strategy (bright blue). The control effort (in newtons) needed to manipulate the whip to hit the target
with the striking only (B) and the preparing and striking (C) are masked to highlight targets where both strategies could successfully hit the target.

the trajectory, denoted as Jerror. If the distance between the
whip tip and target was less than 1 cm, it was assumed to
be a successful hit, and Jerror was set to zero. Additionally,
control effort was quantified as the sum of squared control
inputs over time, Jeffort =

∑
i λ

2
i , promoting energy-efficient

motions. The final objective function, J , was a weighted sum
of these two terms, where α scaled the contribution of the
error term, ensuring that the optimization prioritizes both
accuracy and efficiency in executing the whip motion. Based
on the human experiment, the bounds for the optimization
parameters were -0.2 m to 0.2 m for all x and z parameters,
1 s to 2 s for the duration parameters, and 0 to 100 for the
percent overlap parameter. The patternsearch optimizer was
configured with a maximum of 200 iterations, an initial mesh
size of 0.0001, and a mesh tolerance of 0.0001.

E. Robot Setup and Apparatus
The generated trajectories were tested on a 7-degree-of-

freedom Franka Research 3 (FR3) robot arm (Fig. 1C), which
was impedance controlled in joint space via a custom C++
program running at 1 kHz. A custom-designed passive end-
plate was mounted to the robot’s end effector to securely
hold the whip.

III. RESULTS
In the human experiment, participants performed with two

distinct strategies to complete the task: a single, direct hand
movement toward the target (striking only) and a strategy
that included an additional preparatory movement before
striking (preparing and striking) [11]. The movements with
preparation reached farther targets and more successful hits.

A similar comparison was conducted in simulation apply-
ing the optimization grid search across tested target loca-
tions for both the striking only and preparing and striking
strategies. Fig. 2 A illustrates the target locations in the x-z
plane that were successfully hit by each strategy. The fact
that the preparatory movements hit farther targets provides
one explanation for why participants may favor the more
complex preparing and striking strategy over striking only.

Fig. 2 B and C depict the control effort, Jeffort calculated
in Eqn. 5, required for each strategy. Among target locations

where both strategies succeeded, the preparing and striking
strategy generally required less control effort. This suggests
that, beyond extending the reachable range, participants may
also prefer this strategy for its energetic efficiency.

The sim-to-real transfer of this approach is demonstrated
in Fig.1 C, where the Franka robot arm was able to success-
fully strike the target with the whip.

IV. DISCUSSION AND CONCLUSIONS

This study explored human strategies for manipulating
a 3D-printed whip to strike a target and explored features
in simulation successfully implemented a modeled human
trajectory on a robot. The simulations revealed that the
preparing and striking strategy not only extended the range
of reachable targets, but also reduced control effort compared
to striking only. Since both strategies adhered to similar
velocity constraints (enforced through time constraints in
optimization), this suggests that the preparatory movements
help energize the whip more efficiently, allowing it to reach
farther and higher targets (in the z-direction). This likely
stems from leveraging rather than compensating the passive
dynamics of the whip. Beyond validating human-inspired
motion planning, our results demonstrates the advantages
of incorporating preparatory movements into robotic control
strategies to achieve greater efficiency by harnessing the
natural behavior of flexible objects.

By bridging human motor control with robotic motion
planning, this work contributes to the development of more
dexterous and adaptive robots for handling flexible materials.
The insights gained extend beyond whip manipulation, with
potential applications in tasks involving fabrics, liquids, and
soft robotic systems, where dynamic interactions play a
crucial role. Future work can further refine these strategies
by integrating whips with different dynamics (e.g., a tapered
whip), and by incorporating feedback control, complement-
ing the trajectory planner.
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