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I. INTRODUCTION
Imitation learning algorithms [1–5] typically require a

large amount of data (e.g., thousands of demonstrations) to
tackle complex long-horizon deformable object manipulation
tasks [5]. Such tasks present several unique properties:

• High-dimensional state space that often leads to com-
plex initial and intermediate object states.

• Complex dynamics that are hard to simulate accurately.
• Multi-modal distribution in action space.

These characteristics cause significant distribution shifts and
accumulation errors for probabilistic policies (e.g., diffusion
[1]) (see Fig. 1 left). As a result, extensive real-world data
are required to cover the high-dimensional state space.

To perform complex long-horizon deformable object ma-
nipulation with a limited amount of data, we try to make the
policy model distinguish between good and bad actions and
only select the best action (see Fig. 1 right) during inference.

Based on this idea, we propose a general learning frame-
work DeformPAM (see Fig. 2). Our approach has three
stages: (1) In the first stage, we collect a small amount
of human demonstration data and train a probabilistic policy
model based on diffusion [6] and action primitives. (2) In the
second stage, we run rollouts on real robots with the initial
probabilistic policy model and record the N predicted actions
of each state for preference data annotation. We use DPO
(Direct Preference Optimization) [7] on diffusion models
[8] to directly learn an implicit reward model from these
preference data. (3) Finally, during inference, we use the
initial policy model to generate N actions, score them using
the implicit reward model, and select the action with the
highest reward for execution. This is called Reward-guided
Action Selection (RAS). The use of preference data as a
general assessment representation across tasks reduces the
overhead of manually designing rewards for each task [9, 10].

To validate the effectiveness of DeformPAM, we con-
ducted extensive real-world experiments on three challenging
long-horizon deformable object manipulation tasks involving
granular (granular pile shaping), 1D (rope shaping), and
2D (T-shirt unfolding) deformable objects. Quantitative and
qualitative results indicate that DeformPAM effectively re-
duces anomalous actions, thereby achieving better comple-
tion quality with fewer steps compared with baselines.

Code, data, and more experiments are available at deform-
pam.robotflow.ai.
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Fig. 1: Reward-guided Action Selection (RAS) alleviates
distribution shifts by reassessing sampled actions.

II. METHODOLOGY
We will describe the supervised diffusion-based primitive

policy model in Sec. II-A, the implicit reward model by DPO
finetuning in Sec. II-B, and Reward-guided Action Selection
(RAS) in Sec. II-C. Refer to Appendix II for more details.

A. Supervised Learning for an Initial Primitive Policy
We will first introduce the basics of action primitive

learning and then illustrate how to collect data to train an
initial primitive policy model with supervised learning.

1) Action Primitive Learning: To improve data efficiency,
we decompose long-horizon tasks into multiple action prim-
itives, and our model predicts the primitive parameters. This
approach not only reduces the horizon length [11] but also
allows us to perform highly dynamic actions (e.g. fling
a garment [12]). In each manipulation step, our primitive
learning network M takes an RGB-D image I as input and
predicts the predefined primitive action â = M(P).

2) Data Collection and Model Training: We design a
graphic interface to let the user annotate one optimal action
primitive parameter a0 for each observation step and let the
robot execute the action primitive. Since the optimal actions
in deformable objects manipulation are often diverse (multi-
modal), we offline annotate additional K potentially optimal
actions {ak}K1 called auxiliary actions (see Fig. 2 upper
left) for previous seen observation states. Intuitively, using
auxiliary actions allows the policy model to better understand
the multi-modal nature of expert action distributions. These
pairs of point cloud and action constitute the supervised
learning dataset DSL. We use the DDPM [6] loss function
to train a supervised diffusion primitive policy:

LSL = E(a0,P)∈DSL,t,ϵ∥ϵ− ϵθ(at,P, t)∥22. (1)
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Fig. 2: Pipeline overview of DeformPAM. (1) In stage 1, we assign actions for execution and annotate auxiliary actions for
training a supervised primitive model based on Diffusion. (2) In stage 2, we deploy this model in the environment to collect
preference data which are used to train a DPO-finetuned model. (3) During inference, we utilize the supervised model to
predict actions and employ an implicit reward model for Reward-guided Action Selection (RAS).

B. Preference Learning by DPO Finetuning
To alleviate distribution shifts in long-horizon tasks, we

collect a new round of on-policy data with the supervised
model trained in Sec. II-A, annotate the preferences, and
train a DPO-finetuned model [8].

1) Data Collection: When we run rollouts with the pre-
trained supervised model, we record N predicted potential
actions A = {a}N1 for each given state in one single
pass. Annotators first annotate an optimal action a0 then
do the comparisons between these N predicted actions.
Because N may be large, we design an efficient ranking-
based preference data annotation strategy (see Fig. 2 lower
left). During annotation, since some poor actions cannot be
compared, annotators divide these actions into two groups:
the better, rankable ones Ar and the poorer, unrankable ones
Aur. Then actions in A are sorted and the preference data
are generated by performing the Cartesian product among or
between these groups, which is expressed as
{(aw,al)|aw,al ∈ Ar,aw ≻ al} ∪Ar ×Aur ∪ {a0} ×A. (2)

Here, aw ≻ al denotes action aw win over action al. These
data constitute the preference learning dataset DPL.

2) Learning Algorithm: Once we have the preference
dataset, we can finetune the policy model from a perspective
similar to RLHF [13]. The RLHF objective maximizes
a reward model r(a,P). Here, we adopt the Bradley-
Terry model [14] for preference data. Following Diffusion-
DPO [8], we can indirectly train the RLHF objective with
the loss function as

LPL = −E(aw
0 ,al

0,P)∈DPL,t,ϵ log σ

{−βT [(∥ϵ− ϵθ(a
w
t ,P, t)∥22 − ∥ϵ− ϵSL(a

w
t ,P, t)∥22)−

(∥ϵ− ϵθ(a
l
t,P, t)∥22 − ∥ϵ− ϵSL(a

l
t,P, t)∥22)]} (3)

where β is a regularization coefficient. This objective can
be intuitively seen as encouraging denoising to aw0 and
penalizing denoising to al0, while trying to keep the finetuned
model’s predictions close to the pre-trained model’s.

C. Parallel Inference with Reward-guided Action Selection
With limited data, DPO finetuning may cause significant

forgetting and performance degradation, as observed in [15].
Thus, instead of using the DPO-finetuned model directly, we
propose Reward-guided Action Selection (RAS) to choose
from the multiple actions predicted by the supervised model
trained in Sec. II-A (see Fig. 2 right).

A key byproduct of DPO finetuning is the implicit reward
function. We exploit this to ensure robust action selection
during inference. For the N potential actions predicted by the
supervised model, we calculate the corresponding rewards
and use a greedy strategy to select the action with the highest
reward for execution. This can be formulated as

â = argmax
a∈M(P)

r(a,P) (4)

As in Diffusion-DPO [8], we can compute the reward r as
r(a0,P) = −Et,ϵβT (∥ϵ−ϵPL(at,P, t)∥22−∥ϵ−ϵSL(at,P, t)∥22).

(5)
It can be intuitively interpreted as evaluating the finetuned
model’s tendency of denoising to a0 while using the super-
vised model as a reference point.

How to Understand Reward-guided Action Selection
(RAS)? RAS can be understood as maintaining the original
distribution of the centroids of a generative policy while
adjusting the assessment of their quality. When online data
is limited, the discriminative quality prediction can be gen-
eralized more effectively and efficiently to unseen states.

III. EXPERIMENTS

We conduct experiments on three challenging real-world
long-horizon manipulation tasks. We first describe the task
design and baseline methods, and then analyze the perfor-
mance of each method through quantitative and qualitative
evaluations. Refer to Appendix III for more details.
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(c) T-shirt Unfolding
Fig. 3: Quality metrics per step on the three tasks. The results are calculated on 20 trials.

A. Tasks
We have designed three challenging long-horizon tasks:

granular pile shaping, rope shaping and T-shirt unfolding.
These tasks involve 1D, 2D, and granular deformable ob-
jects and all start with complex initial states. We employ
intersection over union (IoU), coverage, and Earth Mover’s
Distance (EMD) calculated between the current state and the
target state to evaluate the completion quality.

B. Baselines
We design the following primitive-based methods for

quantitative comparison.
• SL: supervised model trained by offline data of stage 1.
• SL + SL: supervised model trained with offline data of

stage 1 and the on-policy data of stage 2.
• DPO [7] + Implicit RAS: DPO-finetuned model in

stage 2 with implicit RAS during inference.
• SL + Explicit RAS [14]: We implement an explicit

reward model by adding a prediction head to the pre-
trained network in stage 1, which is used for RAS.

• SL + Implicit RAS i.e., DeformPAM (Ours).
The dataset sizes for different methods are shown in Tab. I.
TABLE I: The dataset size for each task. PB and DP denote
Primitive-Based methods and Diffusion Policy [1]. # seq. and
# states indicate the number of task sequences and states.

Granular Pile Rope T-shirt
# seq. # states # seq. # states # seq. # states

PB (Stage 1) ∼ 60 400 ∼ 30 200 ∼ 90 200
PB (Stage 2) ∼ 25 200 ∼ 10 100 ∼ 50 146

DP 60 29807 50 9971 - -

C. Quantitative Evaluations

The real-world quantitative results are presented in Fig. 3.
The following are answers to several key research questions.

Q1: Is using only supervised learning adequate for
long-horizon tasks? As shown in Fig. 3, for the three tasks,

with the help of reward-guided action selection, Deform-
PAM leads to an increase in the final completion quality.
The variance in the quality metrics also tends to be smaller.
Meanwhile, SL is more likely to generate abnormal action
and get trapped in an intermediate state. Such instability is
mitigated through reward-guided action selection.

Q2: How about training a supervised model with both
off-policy and on-policy data? Training with on-policy data
is another method to alleviate distribution shifts. Although
such a method can reduce the long-tail phenomenon of
completion steps in Fig. 3c, the results in Fig. 3a and Fig. 3b
indicate that SL + SL achieves only marginal improvements
in harder tasks compared to the one using off-policy data.

Q3: Does employing the finetuned model to predict
action primitives result in better performance? As seen in
Fig. 3a and Fig. 3b, DPO + Implicit RAS performs worse on
the shaping tasks compared to the standard DeformPAM, and
even underperforms SL in T-shirt Unfolding. It is probably
due to the forgetting issues [15] in DPO finetuning.

Q4: Is it more effective to extract the implicit reward
model from DPO or to directly predict the reward? From
Fig. 3a and Fig. 3b, it can be found that for harder tasks like
shaping, it is challenging for SL + Explicit RAS to achieve
a high completion quality as the standard DeformPAM. This
may be caused by reward overfitting when the size of the
preference dataset is limited. In contrast, an implicit reward
model from the DPO-finetuned model can fully leverage the
action distribution learned during supervised learning.

Q5: How does RAS contribute to performance? Please
refer to Appendix III-C.
D. Qualitative Results

We find that our method achieves superior completion
quality and exhibits lower variance, while primitive-free
methods like Diffusion Policy [1] easily get stuck in unseen
states with limited data. For more detailed results, please
refer to Appendix III-D and the project website.

https://deform-pam.robotflow.ai
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APPENDIX I PRELIMINARY

A. Conditional Diffusion Models
Diffusion models are a series of generative models that

excel at generating samples x0 from arbitrary multimodal
distributions by progressively denoising Gaussian noise xT .
They can be conditional when given some condition c. A
conditional diffusion model comprises two processes: the
forward diffusion process and the reverse denoising process.
They are considered as a Markov chain with fixed transitions
q and learnable transitions pθ respectively, which can be
expressed as

q(xt|xt−1) : xt = α
1/2
t xt−1 + (1− αt)

1/2ϵt−1, (6)

pθ(xt−1|xt, c) : xt−1 = µθ(xt, c, t) + (Σθ(xt, c, t))
1/2ξt−1. (7)

where {αt ∈ (0, 1)}T1 are the predefined variance schedule
and ϵ, ξ are Gaussian noise. Moreover, an expression for
directly calculating the diffusion result can be written as

q(xt|x0) : xt =

t∏
i=1

α
1/2
i x0 + (1−

t∏
i=1

αi)
1/2ϵ. (8)

During training, reparameterize µθ as µθ(ϵθ, x0) with Eq. 8
and a simplified ELBO objective in DDPM [6] is derived as

Lsimple = Ex0,t,ϵ∥ϵ− ϵθ(xt, c, t)∥22. (9)

APPENDIX II DETAILS OF DEFORMPAM
A. Supervised Learning for an Initial Primitive Policy

1) Action Primitive Learning: We use OMPL [16] to
generate planning trajectories based on primitive parameters.
PyBullet[17] and rule-based criteria are employed to ensure
safety.

2) Network Architecture: Grounded SAM [18] is used
to segment the point cloud Pt of the target object. Our
network takes the 3D point cloud as input. We adopt a
ResUNet3D [19] and a lightweight Transformer [20] as
backbone. We use a diffusion head to predict final action
primitive parameters. To facilitate the efficiency of training
and inference with auxiliary actions, we design a special
technique for parallel training and inference. We reorganize
the data in self-attention layers of the Transformer to prevent
information leakage between distinct action tokens. This
allows our network to simultaneously take multiple auxiliary
actions and diverse noise in parallel for each state during
training. Furthermore, during inference, for each state, our
model can output multiple (N ) potential actions in parallel
with only one pass.

B. Preference Learning by DPO Finetuning

3) Learning Algorithm: The Bradley-Terry model [14]
provides a relation for (aw,al,P) ∈ DPL, which is

p(aw ≻ al|P) = σ(r(aw,P)− r(al,P)). (10)

C. Parallel Inference with Reward-guided Action Selection

To calculate rewards, we approximate the expectation
through sampling. We observe that sampled values vary
significantly across different diffusion timesteps t, with larger
t producing smaller values. Thus, we use only the smallest
10% of timesteps for efficient reward calculation.

APPENDIX III DETAILS OF EXPERIMENTS AND MORE
ANALYSIS

A. Tasks and Hardware Setup

As shown in Fig. 4a, the definition of each task is listed
as follows.

• Granular Pile Shaping: In this task, the robot sweeps
a disordered pile of granular objects (i.e., nuts) into
the shape of the character T. We design a 3D-printed
flat board as the robot tool and define the primitive
parameters as a = (ps, pe), where ps and ps represent
the start and end positions.

• Rope Shaping: In this task, the robot shapes a looped
rope from a random shape into a circle using the pick-
and-place primitive action a = (p, q), where p and q
stand for the pick and place positions.

• T-shirt Unfolding: The goal of this task is to smooth
out a short-sleeved T-shirt from a highly crumpled state.
We use the fling action in Flingbot [12] as the primitive
a = (pl, pr), where pl and pr denote the left and right
pick positions.

For hardware setup, the dual-arm platform and tools
illustrated in Fig. 4b are used to conduct all the experiments.

B. Implementation Details

We train for 2000 epochs for supervised learning and 200
epochs for preference learning. All methods predict (sample)
N = 8 actions for each state during data collection and
evaluation. We only capture object states before/after each
action primitive for all primitive-based methods. We also
implement Diffusion Policy (DP) [1] with teleoperation data
(RGB inputs, 10 FPS) as a primitive-free method only for
qualitative comparison due to very different hardware and
task settings. We annotate K = 9 auxiliary actions for each
state in the supervised dataset DSL.

C. Contribution of RAS to Performance

We analyze the distribution of normalized implicit reward
values during inference, as shown in Fig. 5a. This indicates
that there is no positive correlation between the sampling
probability of the action generation model and the predicted
reward values, which suggests that employing RAS can
serve as a quality reassessment. From another perspective,
we compare the performance between random sampling and
reward-guided action selection by adjusting the number N
of predicted actions during inference in the T-shirt unfolding
task and computing the final coverage. As shown in Fig. 5b,
as N increases, the model’s performance gradually improves.
This demonstrates that RAS enables the model to select
superior samples, thereby benefiting from a greater number
of samples.

D. Qualitative Results

Results in Fig. 6 show that our method achieves superior
completion quality and exhibits lower variance.
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Fig. 4: (a) Object states and primitives of each task. Beginning with a random complex state of an object, multiple steps of
action primitives are performed to gradually achieve the target state. (b) Hardware setup and tools used in our real-world
experiments. Devices and tools marked with DP are not used in primitive-based methods.
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Fig. 5: (a) Normalized reward distribution during inference
when sampling N = 8 actions. (b) Average coverage for
various numbers N of predicted actions during inference.
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Fig. 6: Final-state heatmaps compared with the target states.

APPENDIX IV RELATED WORKS

A. Deformable Object Manipulation

Deformable object manipulation is a field with a long
research history and numerous applications. Most methods
in this domain typically construct specific simulation en-
vironments tailored to particular object types [12, 21–23],
designing specialized rewards [9, 10] or learning pipelines
[24, 25] to accomplish specific tasks. These hidden costs
make it challenging for these learning frameworks to gen-
eralize across tasks. Recently, Differentiable Particles [26]
attempted to use a differentiable simulator to plan optimal
action trajectories applicable to various tasks. However, it
requires additional object state estimators as input, whereas
our approach learns actions directly from raw point clouds.
AdaptiveGraph [27] is a model-based method for general-

purpose deformable object manipulation, which learns the
dynamics model of deformable objects using massive data
in simulation and online interaction data in the real world,
followed by using MPC to plan optimal execution trajecto-
ries. However, like Differentiable Particles [26], this method
requires building simulation environments for each object
type and each task, and it also suffers from the sim-to-real
gap due to complex dynamics of deformable objects.

B. Imitation Learning for Long-horizon Manipulation

In recent years, there have been two main approaches
to extend imitation learning to complex long horizon tasks:
hierarchical imitation learning [11, 28–31] and learning from
play data [32–35]. Hierarchical imitation learning decom-
poses task learning into high-level planning and low-level
controllers, while the latter approach collects interaction
environment data through human teleoperation of robotic
arms, without requiring specific task goals. Our method is
more akin to hierarchical imitation learning, which improves
sample efficiency by utilizing atomic action skills. However,
these learning methods usually perform experiments on
long-horizon tasks with rigid objects [11, 35], or assume
simple initial object states [32] (e.g., flattened cloth). In
comparison, our framework focuses on long-horizon tasks
with deformable objects in complex initial states. Robo-
Cook [36] is a framework for learning long horizon tasks
involving deformable objects, but it is specifically designed
for elasto-plastic objects (i.e., dough), making it difficult to
adapt directly to 1D (e.g., ropes) and 2D (e.g., garments)
deformable objects. In contrast, our method theoretically
applies to deformable objects of various dimensions.

C. Learning from Human Preference

Learning from human preference data [37–39] has gar-
nered attention in the field of robotics. Recently, reinforce-
ment learning from human feedback (RLHF) [13, 40] has
become a popular way of leveraging preference data for
aligning policy models (e.g., large language models). Sub-
sequently, to eliminate the reliance on an explicit reward
model in RLHF, DPO [7] and CPL [41] enable direct policy



finetuning from preference data, based on contextual bandits
and Markov decision processes respectively. Additionally,
PFM [42] learns a conditional flow matching model from
preference data to optimize the actions predicted by the pol-
icy model. Owing to their convenience, this methodology has
also been applied in fields like image generation (Diffusion-
DPO [8]). Instead of directly using the finetuned policy
model [8] or learning an action transformation model [42],
we leverage the underlying implicit reward model of DPO
to guide action selection from multiple generated action
samples, which has been proven to be beneficial in natural
language processing (NLP) [43, 44].
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