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Abstract—Legged robots have the potential to leverage ob-
stacles such as rocks and boulders to climb steep sand slopes.
However, efficiently repositioning these obstacles to desired lo-
cations remains challenging. Here we present DiffusiveGRAIN,
a learning-based method that enables a multi-legged robot to
strategically induce localized sand avalanches using their legs,
indirectly manipulating obstacle positions. Using a laboratory
granular trackway, we perform 375 loco-manipulation experi-
ments with varied obstacle distances, robot orientation, and robot
actions. DiffusiveGRAIN includes a diffusion-based “environment
predictor” to capture multi-obstacle movements under granu-
lar flow interferences. In addition, we develop a ‘“robot state
predictor” to estimate changes in robot state from various leg
action patterns. Deployment experiments (40 trials) demonstrate
that by integrating the environment and robot state predictors,
a multi-legged robot can autonomously plan its leg movements
based on loco-manipulation goals, successfully shifting closely
located rocks and boulders to desired locations in over 70% of
trials. Our study showcases the potential for multi-robot teams to
collaboratively manipulate obstacles to achieve improved mobility
on challenging terrains.

Index Terms—Granular Medium, Loco-manipulation, Diffu-
sion Model

I. INTRODUCTION

Natural environments contain deformable sand, steep in-
clines, and large rocks and boulders, which present significant
challenges for terrestrial robot locomotion. Inspired from
mountain goats that can push against rocks to climb up steep
cliffs, and snakes that can utilize grass stems to reduce slippage
on soft sand [18, 19], recent robotics research has developed
“obstacle-aided” strategies [7, 8, 12, 14, 16, 20] for robots to
utilize interactions and collisions with large rocks and boulders
to improve mobility on complex terrains. While obstacle-aided
locomotion offers promising opportunities for robots [2, 2,
7, 15] to negotiate challenging terrains, these strategies often
rely on specific leg-obstacle contact positions [13, 16]. As a
result, their effectiveness depends heavily on the availability
and spatial distribution of rocks and boulders, which can vary
unpredictably across natural terrains.

To address this challenge, we propose a novel approach,
DiffusiveGRAIN, for robot loco-manipulation where a U-
Net [17] and a diffusion model [21] (using the noise scheduler
from [6]) takes as input a set of spatially-aligned image
representations of the environment and robot action, and

Fig. 1. Experiment environment. (A) shows the side view of the granular
trackway with an inclination angle of ® = 20 degrees; (B) shows the granular
trackway with two robotic legs mounted on an actuated gantry system; (C)
shows the robot (not the manipulator in (B)) in the granular trackway, and
3D-printed obstacles (purple semi-spheres); (D, E, F) illustrates an example
of a multi-robot collaborative obstacle manipulation scenario to demonstrate
potential application. In (D), robot 1 (to the left, indicated with box) is
trapped by surrounding obstacles with undesired locations that cannot aid
its locomotion; (E) shows robot 2 (at the bottom) using its legs to trigger
a localized sand avalanche, moving the obstacles around the trapped robot
to free the trapped robot; (F) shows that the obstacle manipulation frees the
(previously) trapped robot 1, allowing it to turn clockwise and move towards
desired destination (in the direction of the curved arrow).

predicts the environmental changes on the sand slope. This
prediction involves reasoning about the obstacle movement
atop granular slope as well as the robot state change caused
by the robot’s leg excavation during the robot’s actions. See
Fig. 1 for an overview. During experiments, we use a receding
horizon prediction to find the robot’s optimal action toward the
robot task.

II. DIFFUSIVEGRAIN: LEARNING-BASED APPROACH TO
PREDICT OBSTACLE MOVEMENT

A. Environment State Predictor using Diffusion

In this work, we built upon a prior method, GRAIN [9],
which used a Vision Transformer (ViT) [3] to process image
representations of granular dynamics and robot excavation
actions. GRAIN was found to work well for single leg, single
obstacle manipulation, yet did not generalize well for multi-
obstacle scenarios when the obstacles are located adjacently,
and did not consider robot state change when predicting and
planning manipulation actions.
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Fig. 2. System overview. The environment predictor f. uses a diffusion model (with a U-Net backbone) to predict the depth change of the environment
given the depth image and action. The robot state predictor f, uses a U-Net to predict the robot state change given the robot state and action. During policy
execution, given the predicted robot state change, we introduce an “Effective Action Adjustment (EAA)” to compensate for the affected leg-granular-media
interaction by the robot state change. We then combine the updated robot action image with the depth image to the trained diffusion model and get the
predicted depth image change. We combine this with the predicted robot state and the original depth image to get the predicted next depth image. The red
addition symbols represent channel-wise image concatenation operation, and the green addition symbols represent an image combination method.

To address these deficits, we propose DiffusiveGRAIN, a
learning-based method that enables multi-legged robots to
reposition densely-distributed rocks and boulders on sand
slopes to desired locations during its locomotion. The key fea-
ture of DiffusiveGRAIN is its novel granular media dynamics
predictor that learns both obstacle and robot movement under
leg excavation actions.

Our environment state predictor f. consists of a U-Net
backbone [17] diffusion model. The inputs are the depth image
I, and an RGB image A, representing the robot action. For
A,, we use a space-aligned gradient color region from blue to
red to represent the robot leg interaction area with the granular
slope. The color region’s length is the effective action length
(12.0cm) and its width is the robot leg width (1.5 cm). We
train f,. to predict the change in the depth image of the granular
slope surface f.(I;, A;). The predicted image is converted to
a grayscale image, which we can then add to the original
input depth image to get the predicted depth image of the
environment for the next state: I + fo (I, Ay).

B. Robot State Predictor

We use a second U-Net, f,., to predict the robot state
change given its action and the environment state. As in f,,
the inputs are the depth image I, and the RGB image action
representation A,. During training, we use OpenCV code [1]
to augment the input data to f,. by adding obstacles to the
depth image of the collected dataset while keeping the same
label. As a result, the U-Net learns from the input depth
images with extra obstacles. We use this method based on
our observation during the experiments that the obstacles do
not noticeably affect robot’s state change unless the robot leg
directly contacts obstacles. The output is the predicted robot
state change f,.(I;, A¢). We can similarly convert this to a
grayscale and obtain the predicted depth image representing
the robot, I; + f,.(I;, A;), for the next state.

C. Effective Action Adjustment (EAA)

We observe that robot action-triggered sand avalanche be-
havior can be significantly different compared to the sand
avalanche behavior triggered by the manipulator with the same
excavation action. The reason is that robot leg excavation
actions can lead to a different amount of advancement or
slippage in each leg, resulting in significant changes to the
robot state during excavation. We propose an Effective Action
Adjustment (EAA) method to compensate for this prediction
error. Based on the robot action, we know there are two leg-
sand interaction events in a full rotation of a robot leg, and the
robot state change is because the robot leg rotation provides
a robot propulsion and rotation force to change its position
and orientation. The robot has an initial state xq and during
the first leg-sand interaction the robot state changes to x; and
later changes to xs during the second leg-sand interaction.
The EAA assumes the leg excavation action triggered sand
avalanche during the robot transition from xq to x2 is equal
to the leg excavation action triggered a sand avalanche at the
fixed robot state x;. To get x; in the DiffusiveGRAIN policy
execution stage, we assume x; = X022,

III. EVALUATION
A. Experiment Setup

Fig. 1A illustrates our experimental setup. The granular
trackway is (60cm L x 60cm W x 20cm D) and contains
model granular medium (Grainger, 0.3 mm glass beads). The
0.3mm particle size is similar to those observed in natural
deserts, and behave qualitatively similar with natural sand,
and thus has been used as an ideal model granular medium
in many previous granular physics and robot locomotion
studies [4, 10, 11]. The granular trackway can be tilted up
to 35 degrees to emulate a wide variety of sand slopes
in natural environments [5]. We mount an RGBD camera
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Fig. 3. One multi-robot loco-manipulation trial using DiffusiveGRAIN and GRAIN. We place one robot in the middle left, and surround it with obstacles.
We place a second robot to the bottom right. The second robot must manipulate the 3 target obstacles to move below the red line. In the DiffusiveGRAIN
trial, the bottom right robot achieves the manipulation task and moves backward to create room at Step 10. The first robot is free and then locomotes to the
target shown by the green square. In the GRAIN trial, both the manipulation task and the locomotion task failed. Specifically, in Step 21 and Step 25 the
robots stop the policy execution because GRAIN predicts there is no action that could further optimize the cost function.

(Intel RealSense 435-i) above the granular slope to record the
granular flow and obstacle movement.

B. Baselines and Evaluation Protocol

Robot movement prediction Baseline: We used GRAIN
GRAIN [9] as the locomotion baseline. GRAIN takes the depth
image concatenated with the robot action representation image
as input and outputs a 1 x 3 matrix, which corresponds to robot
positions on the x-axis and y-axis and robot orientation.

Manipulation Planning Baseline: As a strong baseline, we
adapted GRAIN [9] to this setup. We trained GRAIN with the
new dataset and output the coordinates of each obstacle. The
GRAIN framework was originally designed to train on depth
images with only one obstacle, resulting in a 1 X 2 matrix
corresponding to obstacle positions on the x-axis and y-axis.
However, we have 1 to 5 obstacles. Consequently, we provided
the ground truth number of obstacles to GRAIN and modified
its output to be a 5 x 2 matrix. When there are N < 5 obstacles,
GRAIN only considers the first N rows in the matrix.

Evaluation Protocol: We evaluate using Euclidean distance.
To compute the “position” of each obstacle and robot, we
estimate their Center of Mass (CoM). For manipulation, we
sum the Euclidean distance among obstacle positions and their
targets. For locomotion, we measure the distance between the
robot and the locomotion target. In all trials, the robot stops
acting if the policy predicts that no action can further reduce
the cost function. In addition, an automatic failure applies if
a robot robot flips over during policy execution.

C. Evaluation Results

Single Robot Manipulation: Using DiffusiveGRAIN with
manipulation mode results in 8/10 success, while GRAIN
results in 6/10 success. Among trials that fail, the mean errors
of DiffusiveGRAIN are 12.8£2.4 cm, compared to 17.84+5.2
cm for GRAIN.

Single Robot Locomotion: Using DiffusiveGRAIN with
locomotion mode results in 9/10 success, while GRAIN gets
8/10 success. Among trials that fail, DiffusiveGRAIN’s errors
are 8.6+0 cm while GRAIN’s errors are 12.44+3.0 cm.

Single Robot Loco-manipulation: In the single robot loco-
manipulation evaluation, the robot must move all 4 obstacles

to a target region (below the red line). In parallel, it must
also navigate to a target location (marked by a green square).
Using DiffusiveGRAIN with loco-manipulation mode results
in 7/10 success, compared to 2/10 for GRAIN. The average
error for failed trials is 17.24+4.6 cm for DiffusiveGRAIN, and
28.4£9.0 cm for GRAIN.

Multi-robot collaboration: In this task, we surround a robot
with obstacles, and place a second “free” robot nearby (see
Fig. 3). The human specifies the 3 obstacles that the second
robot needs to manipulate to free the first robot. The human
also specifies a locomotion task for the trapped robot. During
each trial, the free robot acts first, and executes its manipula-
tion policy to adjust the location of the 3 obstacles. After
achieving the manipulation task, that robot moves back to
make room for the first—originally trapped—robot (see Fig. 3
at Step 10). As the first robot is no longer trapped, it must
only locomote to its target. The robot successfully arrives
at the target location at Step 44, ultimately suggesting the
potential for DiffusiveGRAIN in a multi-agent robot system
with locomotion and manipulation. Using DiffusiveGRAIN
with locomotion and manipulation modes, the robot achieves
7/10 success, while GRAIN results in 4/10 success. The
failure errors for DiffusiveGRAIN are 15.8cm=+3.6 cm, versus
23.84+7.6 cm for GRAIN.
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Fig. 4. Experiment results. Pink and light blue bars are the success rate of
DiffusiveGRAIN and the baseline (GRAIN) respectively. The red and blue
error bars are the mean and standard deviation of failed trials in each task
respectively, measured by the sum of distances among the objects and target

locations at the end of policy execution.



(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

G. Bradski. The OpenCV Library. Dr. Dobb’s Journal
of Software Tools, 2000.

Kaustav Chakraborty, Haodi Hu, Matthew D Kvalheim,
and Feifei Qian. Planning of obstacle-aided navigation
for multi-legged robots using a sampling-based method
over directed graphs. IEEE Robotics and Automation
Letters, 7(4):8861-8868, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. In Interna-
tional Conference on Learning Representations (ICLR),
2021.

Justin R Finn, Ming Li, and Sourabh V Apte. Particle
based modelling and simulation of natural sand dynamics
in the wave bottom boundary layer. Journal of Fluid
Mechanics, 796:340-385, 2016.

Nick Gravish and Daniel I Goldman. Effect of volume
fraction on granular avalanche dynamics. Physical Re-
view E, 90(3):032202, 2014.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising
Diffusion Probabilistic Models. In Neural Information
Processing Systems (NeurIPS), 2020.

Haodi Hu and Feifei Qian. Obstacle-aided trajectory
control of a quadrupedal robot through sequential gait
composition. IEEE Transactions on Robotics, pages 1—
15, 2024.

Haodi Hu, Xingjue Liao, Wuhao Du, and
Feifei Qian. Multi-robot  connection towards
collective obstacle field traversal, 2024. URL

https://arxiv.org/abs/2409.11709.

Haodi Hu, Feifei Qian, and Daniel Seita. Learning granu-
lar media avalanche behavior for indirectly manipulating
obstacles on a granular slope. In 8th Annual Conference
on Robot Learning, 2024.

Chen Li, Tingnan Zhang, and Daniel I Goldman. A
terradynamics of legged locomotion on granular media.
science, 339(6126):1408-1412, 2013.

Ryan D Maladen, Yang Ding, Chen Li, and Daniel I
Goldman. Undulatory swimming in sand: subsurface
locomotion of the sandfish lizard. science, 325(5938):
314-318, 2009.

Ratan Othayoth, George Thoms, and Chen Li. An energy
landscape approach to locomotor transitions in complex
3d terrain. Proceedings of the National Academy of
Sciences, 117(26):14987-14995, 2020.

Feifei Qian and Daniel Goldman. Anticipatory control
using substrate manipulation enables trajectory control
of legged locomotion on heterogeneous granular media.
In Micro-and Nanotechnology Sensors, Systems, and Ap-
plications VII, volume 9467, page 94671U. International
Society for Optics and Photonics, 2015.

Feifei Qian and Daniel E Koditschek. An obstacle distur-

[17]

[18]

bance selection framework: emergent robot steady states
under repeated collisions. The International Journal of
Robotics Research, 2020.

Divya Ramesh, Anmol Kathail, Daniel E Koditschek, and
Feifei Qian. Modulation of robot orientation via leg-
obstacle contact positions. IEEE Robotics and Automa-
tion Letters, 5(2):2054-2061, 2020.

Jennifer M Rieser, Perrin E Schiebel, Arman Pazouki,
Feifei Qian, Zachary Goddard, Kurt Wiesenfeld, Andrew
Zangwill, Dan Negrut, and Daniel I Goldman. Dynamics
of scattering in undulatory active collisions. Physical
Review E, 99(2):022606, 2019.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-Net: Convolutional Networks for Biomedical Image
Segmentation. In International Conference on Medical
Image Computing and Computer-Assisted Intervention
(MICCAI), 2015.

Perrin E Schiebel, Jennifer M Rieser, Alex M Hubbard,
Lillian Chen, and Daniel I Goldman. Collisional diffrac-
tion emerges from simple control of limbless locomotion.
In Conference on Biomimetic and Biohybrid Systems,
pages 611-618. Springer, 2017.

Perrin E Schiebel, Jennifer M Rieser, Alex M Hubbard,
Lillian Chen, D Zeb Rocklin, and Daniel I Goldman.
Mechanical diffraction reveals the role of passive dynam-
ics in a slithering snake. Proceedings of the National
Academy of Sciences, 116(11):4798-4803, 2019.

Tianyu Wang, Christopher Pierce, Velin Kojouharov,
Baxi Chong, Kelimar Diaz, Hang Lu, and Daniel I
Goldman. Mechanical intelligence simplifies control
in terrestrial limbless locomotion. arXiv preprint
arXiv:2304.08652, 2023.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong,
Runsheng Xu, Yue Zhao, Wentao Zhang, Bin Cui, and
Ming-Hsuan Yang. Diffusion models: A comprehensive
survey of methods and applications. ACM Computing
Surveys, 56(4):1-39, 2023.



